A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

Overview

FairGNN

A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021). [paper]

Abstract

Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other machine learning models, GNNs may make predictions biased on protected sensitive attributes, e.g., skin color, gender, and nationality. Because machine learning algorithms including GNNs are trained to faithfully reflect the distribution of the training data which often contains historical bias towards sensitive attributes. In addition, the discrimination in GNNs can be magnified by graph structures and the message-passing mechanism. As a result, the applications of GNNs in sensitive domains such as crime rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive attribute information. FairGNN is proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited sensitive information. Our theoretical analysis shows that FairGNN can ensure the fairness of GNNs under mild conditions given limited nodes with known sensitive attributes. Extensive experiments on real-world datasets also demonstrate the effectiveness of FairGNN in debiasing and keeping high accuracy.

Requirements

torch==1.2.0
DGL=0.4.3

Run the code

After installation, you can clone this repository

git clone https://github.com/EnyanDai/FariGNN.git
cd FairGNN/src
python train_fairGNN.py \
        --seed=42 \
        --epochs=2000 \
        --model=GCN \
        --sens_number=200 \
        --dataset=pokec_z \
        --num-hidden=128 \
        --acc=0.69 \
        --roc=0.76 \
        --alpha=100 \
        --beta=1

Model Selection

During the training phase, we will select the best epoch based on the performance on the validation set. More speciafically, the selection rules are:

  1. We only care about the epochs that the accuracy and roc socre of the FairGNN on the validation set are higher than the thresholds (defined by --acc and --roc).
  2. We will select the epoch whose summation of parity and equal opportunity is the smallest.

Data Set

  1. Pokec_z and Pokec_n are stored in dataset\pokec as region_job.xxx and region_job_2.xxx, respectively. They are sampled from soc_Pokec.
@inproceedings{takac2012data,
  title={Data analysis in public social networks},
  author={Takac, Lubos and Zabovsky, Michal},
  booktitle={International scientific conference and international workshop present day trends of innovations},
  volume={1},
  number={6},
  year={2012}
  1. NBA is stored in dataset\NBA as nba.xxx It is collected with through the Twitter social network and the players' information on Kaggle

Reproduce the results

All the hyper-parameters settings are included in src\scripts folder.

To reproduce the performance reported in the paper, you can run the bash files in folder src\scripts.

bash scripts/pokec_z/train_fairGCN.sh

Cite

If you find this repo to be useful, please cite our paper. Thank you.

@inproceedings{dai2021say,
  title={Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information},
  author={Dai, Enyan and Wang, Suhang},
  booktitle={Proceedings of the 14th ACM International Conference on Web Search and Data Mining},
  pages={680--688},
  year={2021}
}
Owner
The Pennsylvania State University
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022