Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Overview

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

This is our implementation of Points2Surf, a network that estimates a signed distance function from point clouds. This SDF is turned into a mesh with Marching Cubes. For more details, please watch the short video and long video.

Points2Surf reconstructs objects from arbitrary points clouds more accurately than DeepSDF, AtlasNet and Screened Poisson Surface Reconstruction.

The architecture is similar to PCPNet. In contrast to other ML-based surface reconstruction methods, e.g. DeepSDF and AtlasNet, Points2Surf is patch-based and therefore independent from classes. The strongly improved generalization leads to much better results, even better than Screened Poisson Surface Reconstruction in most cases.

This code was mostly written by Philipp Erler and Paul Guerrero. This work was published at ECCV 2020.

Prerequisites

  • Python >= 3.7
  • PyTorch >= 1.6
  • CUDA and CuDNN if using GPU
  • BlenSor 1.0.18 RC 10 for dataset generation

Quick Start

To get a minimal working example for training and reconstruction, follow these steps. We recommend using Anaconda to manage the Python environment. Otherwise, you can install the required packages with Pip as defined in the requirements.txt.

# clone this repo
# a minimal dataset is included (2 shapes for training, 1 for evaluation)
git clone https://github.com/ErlerPhilipp/points2surf.git

# go into the cloned dir
cd points2surf

# create a conda environment with the required packages
conda env create --file p2s.yml

# activate the new conda environment
conda activate p2s

# train and evaluate the vanilla model with default settings
python full_run.py

Reconstruct Surfaces from our Point Clouds

Reconstruct meshes from a point clouds to replicate our results:

# download the test datasets
python datasets/download_datasets_abc.py
python datasets/download_datasets_famous.py
python datasets/download_datasets_thingi10k.py
python datasets/download_datasets_real_world.py

# download the pre-trained models
python models/download_models_vanilla.py
python models/download_models_ablation.py
python models/download_models_max.py

# start the evaluation for each model
# Points2Surf main model, trained for 150 epochs
bash experiments/eval_p2s_vanilla.sh

# ablation models, trained to for 50 epochs
bash experiments/eval_p2s_small_radius.sh
bash experiments/eval_p2s_medium_radius.sh
bash experiments/eval_p2s_large_radius.sh
bash experiments/eval_p2s_small_kNN.sh
bash experiments/eval_p2s_large_kNN.sh
bash experiments/eval_p2s_shared_transformer.sh
bash experiments/eval_p2s_no_qstn.sh
bash experiments/eval_p2s_uniform.sh
bash experiments/eval_p2s_vanilla_ablation.sh

# additional ablation models, trained for 50 epochs
bash experiments/eval_p2s_regression.sh
bash experiments/eval_p2s_shared_encoder.sh

# best model based on the ablation results, trained for 250 epochs
bash experiments/eval_p2s_max.sh

Each eval script reconstructs all test sets using the specified model. Running one evaluation takes around one day on a normal PC with e.g. a 1070 GTX and grid resolution = 256.

To get the best results, take the Max model. It's 15% smaller and produces 4% better results (mean Chamfer distance over all test sets) than the Vanilla model. It avoids the QSTN and uses uniform sub-sampling.

Training with our Dataset

To train the P2S models from the paper with our training set:

# download the ABC training and validation set
python datasets/download_datasets_abc_training.py

# start the evaluation for each model
# Points2Surf main model, train for 150 epochs
bash experiments/train_p2s_vanilla.sh

# ablation models, train to for 50 epochs
bash experiments/train_p2s_small_radius.sh
bash experiments/train_p2s_medium_radius.sh
bash experiments/train_p2s_large_radius.sh
bash experiments/train_p2s_small_kNN.sh
bash experiments/train_p2s_large_kNN.sh
bash experiments/train_p2s_shared_transformer.sh
bash experiments/train_p2s_no_qstn.sh
bash experiments/train_p2s_uniform.sh
bash experiments/train_p2s_vanilla_ablation.sh

# additional ablation models, train for 50 epochs
bash experiments/train_p2s_regression.sh
bash experiments/train_p2s_shared_encoder.sh

# best model based on the ablation results, train for 250 epochs
bash experiments/train_p2s_max.sh

With 4 RTX 2080Ti, we trained around 5 days to 150 epochs. Full convergence is at 200-250 epochs but the Chamfer distance doesn't change much. The topological noise might be reduced, though.

Logging of loss (absolute distance, sign logits and both) with Tensorboard is done by default. Additionally, we log the accuracy, recall and F1 score for the sign prediction. You can start a Tensorboard server with:

bash start_tensorboard.sh

Make your own Datasets

The point clouds are stored as NumPy arrays of type np.float32 with ending .npy where each line contains the 3 coordinates of a point. The point clouds need to be normalized to the (-1..+1)-range.

A dataset is given by a text file containing the file name (without extension) of one point cloud per line. The file name is given relative to the location of the text file.

Dataset from Meshes for Training and Reconstruction

To make your own dataset from meshes, place your ground-truth meshes in ./datasets/(DATASET_NAME)/00_base_meshes/. Meshes must be of a type that Trimesh can load, e.g. .ply, .stl, .obj or .off. Because we need to compute signed distances for the training set, these input meshes must represent solids, i.e be manifold and watertight. Triangulated CAD objects like in the ABC-Dataset work in most cases. Next, create the text file ./datasets/(DATASET_NAME)/settings.ini with the following settings:

[general]
only_for_evaluation = 0
grid_resolution = 256
epsilon = 5
num_scans_per_mesh_min = 5
num_scans_per_mesh_max = 30
scanner_noise_sigma_min = 0.0
scanner_noise_sigma_max = 0.05

When you set only_for_evaluation = 1, the dataset preparation script skips most processing steps and produces only the text file for the test set.

For the point-cloud sampling, we used BlenSor 1.0.18 RC 10. Windows users need to fix a bug in the BlenSor code. Make sure that the blensor_bin variable in make_dataset.py points to your BlenSor binary, e.g. blensor_bin = "bin/Blensor-x64.AppImage".

You may need to change other paths or the number of worker processes and run:

python make_dataset.py

The ABC var-noise dataset with about 5k shapes takes around 8 hours using 15 worker processes on a Ryzen 7. Most computation time is required for the sampling and the GT signed distances.

Dataset from Point Clouds for Reconstruction

If you only want to reconstruct your own point clouds, place them in ./datasets/(DATASET_NAME)/00_base_pc/. The accepted file types are the same as for meshes.

You need to change some settings like the dataset name and the number of worker processes in make_pc_dataset.py and then run it with:

python make_pc_dataset.py

Manually Created Dataset for Reconstruction

In case you already have your point clouds as Numpy files, you can create a dataset manually. Put the *.npy files in the (DATASET_NAME)/04_pts/ directory. Then, you need to list the names (without extensions, one per line) in a textfile (DATASET_NAME)/testset.txt.

Related Work

Kazhdan, Michael, and Hugues Hoppe. "Screened poisson surface reconstruction." ACM Transactions on Graphics (ToG) 32.3 (2013): 1-13.

This work is the most important baseline for surface reconstruction. It fits a surface into a point cloud.

Groueix, Thibault, et al. "A papier-mâché approach to learning 3d surface generation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

This is one of the first data-driven methods for surface reconstruction. It learns to approximate objects with 'patches', deformed and subdivided rectangles.

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

This is one of the first data-driven methods for surface reconstruction. It learns to approximate a signed distance function from points.

Chabra, Rohan, et al. "Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction." arXiv preprint arXiv:2003.10983 (2020).

This concurrent work uses a similar approach as ours. It produces smooth surfaces but requires point normals.

Citation

If you use our work, please cite our paper:

@InProceedings{ErlerEtAl:Points2Surf:ECCV:2020,
  title   = {{Points2Surf}: Learning Implicit Surfaces from Point Clouds}, 
  author="Erler, Philipp
    and Guerrero, Paul
    and Ohrhallinger, Stefan
    and Mitra, Niloy J.
    and Wimmer, Michael",
  editor="Vedaldi, Andrea
    and Bischof, Horst
    and Brox, Thomas
    and Frahm, Jan-Michael",
  year    = {2020},
  booktitle="Computer Vision -- ECCV 2020",
  publisher="Springer International Publishing",
  address="Cham",
  pages="108--124",
  abstract="A key step in any scanning-based asset creation workflow is to convert unordered point clouds to a surface. Classical methods (e.g., Poisson reconstruction) start to degrade in the presence of noisy and partial scans. Hence, deep learning based methods have recently been proposed to produce complete surfaces, even from partial scans. However, such data-driven methods struggle to generalize to new shapes with large geometric and topological variations. We present Points2Surf, a novel patch-based learning framework that produces accurate surfaces directly from raw scans without normals. Learning a prior over a combination of detailed local patches and coarse global information improves generalization performance and reconstruction accuracy. Our extensive comparison on both synthetic and real data demonstrates a clear advantage of our method over state-of-the-art alternatives on previously unseen classes (on average, Points2Surf brings down reconstruction error by 30{\%} over SPR and by 270{\%}+ over deep learning based SotA methods) at the cost of longer computation times and a slight increase in small-scale topological noise in some cases. Our source code, pre-trained model, and dataset are available at: https://github.com/ErlerPhilipp/points2surf.",
  isbn="978-3-030-58558-7"
  doi = {10.1007/978-3-030-58558-7_7},
}
Owner
Philipp Erler
PhD student at TU Wien researching surface reconstruction with deep learning
Philipp Erler
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023