Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Related tags

Deep LearningPi-NAS
Overview

Π-NAS

This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift.

Our Trained Models

  • Here is a summary of our searched models:

    ImageNet FLOPs Params [email protected] [email protected]
    Π-NAS-cls 5.38G 27.1M 81.6% 95.7%
    Mask-RCNN on COCO 2017 APbb APmk
    Π-NAS-trans 44.07 39.50
    DeeplabV3 on ADE20K pixAcc mIoU
    Π-NAS-trans 81.27 45.47
    DeeplabV3 on Cityscapes mIoU
    Π-NAS-trans 80.70

Usage

1. Requirements

  • Install third-party requirements with command pip install -e .
  • Prepare ImageNet, COCO 2017, ADE20K and Cityscapes datasets
    • Our data paths are at /data/ImageNet, /data/coco, /data/ADEChallengeData2016 and /data/citys, respectively.
    • You can specify COCO's data path through environment variable DETECTRON2_DATASETS and others in experiments/recognition/verify.py, encoding/datasets/ade20k.py and encoding/datasets/cityscapes.py.
  • Download our checkpoint files

2. Evaluate our models

  • You can evaluate our models with the following command:

    ImageNet FLOPs Params [email protected] [email protected]
    Π-NAS-cls 5.38G 27.1M 81.6% 95.7%
    python experiments/recognition/verify.py --dataset imagenet --model alone_resnest50 --choice-indices 3 0 1 3 2 3 1 2 0 3 2 1 3 0 3 2 --resume /path/to/PiNAS_cls.pth.tar
    Mask-RCNN on COCO 2017 APbb APmk
    Π-NAS-trans 44.07 39.50
    DETECTRON2_DATASETS=/data python experiments/detection/plain_train_net.py --config-file experiments/detection/configs/mask_rcnn_ResNeSt_50_FPN_syncBN_1x.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS /path/to/PiNAS_trans_COCO.pth MODEL.RESNETS.CHOICE_INDICES [3,3,3,3,1,1,3,3,3,0,0,1,1,0,2,1]
    DeeplabV3 on ADE20K pixAcc mIoU
    Π-NAS-trans 81.27 45.47
    python experiments/segmentation/test.py --dataset ADE20K --model deeplab --backbone alone_resnest50 --choice-indices 3 3 3 3 1 1 3 3 3 0 0 1 1 0 2 1 --aux --se-loss --resume /path/to/PiNAS_trans_ade.pth.tar --eval
    DeeplabV3 on Cityscapes mIoU
    Π-NAS-trans 80.70
    python experiments/segmentation/test.py --dataset citys --base-size 2048 --crop-size 768 --model deeplab --backbone alone_resnest50 --choice-indices 3 3 3 3 1 1 3 3 3 0 0 1 1 0 2 1 --aux --se-loss --resume /path/to/PiNAS_trans_citys.pth.tar --eval

Training and Searching

This reimplementation is based on OpenSelfSup and MoCo. Please acknowledge their contribution.

cd OpenSelfSup && pip install -v -e .

1. Π-NAS Learning

bash tools/dist_train.sh configs/pinas_learning.py 8 --work_dir /path/to/save/logs/and/models

2. Extract supernet backbone weights

python tools/extract_backbone_weights.py /checkpoint/of/1. /extracted/weight/of/1.

3. Linear Training

bash tools/dist_train.sh configs/pinas_linear_training.py 8 --pretrained /extracted/weight/of/1. --work_dir /path/to/save/logs/and/models

4. Linear Evaluation

bash tools/dist_train.sh configs/pinas_linear_evaluation.py 8 --resume_from /checkpoint/of/3. --work_dir /path/to/save/logs/and/models
Owner
Jiqi Zhang
Jiqi Zhang
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023