PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

Overview

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

This repo presents PyTorch implementation of Multi-targe Graph Domain Adaptation framework from "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" CVPR 2021. The framework is pivoted around two key concepts: graph feature aggregation and curriculum learning (see pipeline below or project web-page).

Results

Environment

Python >= 3.6
PyTorch >= 1.8.1

To install dependencies run (line 1 for pip or line 2 for conda env):

pip install -r requirements.txt
conda install --file requirements.txt

Disclaimer. This code has been tested with cuda toolkit 10.2. Please install PyTorch as supported by your machine.

Datasets

Four datasets are supported:

To run this code, one must check if the txt file names in data/<dataset_name> are matching with the downloaded domain folders. For e.g., to run OfficeHome, the domain sub-folders should be art/, clipart/, product/ and real/ corresponding to art.txt, clipart.txt, product.txt and real.txt that can be found in the data/office-home/.

Methods

  • CDAN
  • CDAN+E

Commands

Office-31

python src/main.py \
        --method 'CDAN' \
        --encoder 'ResNet50' \
 	--dataset 'office31' \
 	--data_root [your office31 folder] \
 	--source 'dslr' \
 	--target 'webcam' 'amazon' \
 	--source_iters 200 \
 	--adapt_iters 3000 \
 	--finetune_iters 15000 \
 	--lambda_node 0.3 \
 	--output_dir 'office31-dcgct/dslr_rest/CDAN'

Office-Home

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'office-home' \
	--data_root [your OfficeHome folder] \
	--source 'art' \
	--target 'clipart' 'product' 'real' \
	--source_iters 500 \
	--adapt_iters 10000 \
	--finetune_iters 15000 \
	--lambda_node 0.3 \
	--output_dir 'officeHome-dcgct/art_rest/CDAN' 

PACS

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'pacs' \
	--data_root [your PACS folder] \
	--source 'photo' \
	--target 'cartoon' 'art_painting' 'sketch' \
	--source_iters 200 \
	--adapt_iters 3000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'pacs-dcgct/photo_rest/CDAN'  

DomainNet

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet101' \
	--dataset 'domain-net' \
	--data_root [your DomainNet folder] \
	--source 'sketch' \
	--target 'clipart' 'infograph' 'painting' 'real' 'quickdraw' \
	--source_iters 5000 \
	--adapt_iters 50000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'domainNet-dcgct/sketch_rest/CDAN'

Citation

If you find our paper and code useful for your research, please consider citing our paper.

@inproceedings{roy2021curriculum,
  title={Curriculum Graph Co-Teaching for Multi-target Domain Adaptation},
  author={Roy, Subhankar and Krivosheev, Evgeny and Zhong, Zhun and Sebe, Nicu and Ricci, Elisa},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Evgeny
Evgeny
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022