PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Related tags

Deep Learningczsl
Overview

Compositional Zero-Shot Learning

This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learning and Open World Compositional Zero-Shot Learning. The code provides the implementation of the methods CGE, CompCos together with other baselines (e.g. SymNet, AoP, TMN, LabelEmbed+,RedWine). It also provides train and test for the Open World CZSL setting and the new GQA benchmark.

Setup

  1. Clone the repo

  2. We recommend using Anaconda for environment setup. To create the environment and activate it, please run:

    conda env create --file environment.yml
    conda activate czsl
  1. Go to the cloned repo and open a terminal. Download the datasets and embeddings, specifying the desired path (e.g. DATA_ROOT in the example):
    bash ./utils/download_data.sh DATA_ROOT
    mkdir logs

Training

Closed World. To train a model, the command is simply:

    python train.py --config CONFIG_FILE

where CONFIG_FILE is the path to the configuration file of the model. The folder configs contains configuration files for all methods, i.e. CGE in configs/cge, CompCos in configs/compcos, and the other methods in configs/baselines.

To run CGE on MitStates, the command is just:

    python train.py --config configs/cge/mit.yml

On UT-Zappos, the command is:

    python train.py --config configs/cge/utzappos.yml

Open World. To train CompCos (in the open world scenario) on MitStates, run:

    python train.py --config configs/compcos/mit/compcos.yml

To run experiments in the open world setting for a non-open world method, just add --open_world after the command. E.g. for running SymNet in the open world scenario on MitStates, the command is:

    python train.py --config configs/baselines/mit/symnet.yml --open_world

Note: To create a new config, all the available arguments are indicated in flags.py.

Test

Closed World. To test a model, the code is simple:

    python test.py --logpath LOG_DIR

where LOG_DIR is the directory containing the logs of a model.

Open World. To test a model in the open world setting, run:

    python test.py --logpath LOG_DIR --open_world

To test a CompCos model in the open world setting with hard masking, run:

    python test.py --logpath LOG_DIR_COMPCOS --open_world --hard_masking

References

If you use this code, please cite

@inproceedings{naeem2021learning,
  title={Learning Graph Embeddings for Compositional Zero-shot Learning},
  author={Naeem, MF and Xian, Y and Tombari, F and Akata, Zeynep},
  booktitle={34th IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021},
  organization={IEEE}
}

and

@inproceedings{mancini2021open,
  title={Open World Compositional Zero-Shot Learning},
  author={Mancini, M and Naeem, MF and Xian, Y and Akata, Zeynep},
  booktitle={34th IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021},
  organization={IEEE}
}

Note: Some of the scripts are adapted from AttributeasOperators repository. GCN and GCNII implementations are imported from their respective repositories. If you find those parts useful, please consider citing:

@inproceedings{nagarajan2018attributes,
  title={Attributes as operators: factorizing unseen attribute-object compositions},
  author={Nagarajan, Tushar and Grauman, Kristen},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={169--185},
  year={2018}
}
Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023