Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Overview

Object Dataset Tools

Introduction

This repository contains pure python scripts to create object masks, bounding box labels, and 3D reconstructed object mesh (.ply) for object sequences filmed with an RGB-D camera. This project can prepare training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, and many object detection (e.g., faster rcnn) and instance segmentation (e.g., mask rcnn) projects. Ideally, if you have realsense cameras and have some experience with MeshLab or Blender, creating your customized dataset should be as easy as executing a few command line arguments.

This codes in this repository implement a raw 3D model acquisition pipeline through aruco markers and ICP registration. The raw 3D model obtained needs to be processed and noise-removed in a mesh processing software. After this step, there are functions to generate required labels in automatically.

The codes are currently written for a single object of interest per frame. They can be modified to create a dataset that has several items within a frame.

cover mask

Installation

Installation of this repository has been tested on a fresh install of Ubuntu 16.04 with Python 2.7, but should be compatible with Python 3 as well. Installations on a wide range of intel realsense drivers and their python wrappers are included.

Create dataset on customized items

1. Preparation

Color print the pdf with the correctly sized aruco markers (with ID 1-13) in the arucomarkers folder. Affix the markers surrounding the object of interest, as shown in the picture, make sure that you don't have markers with dulplicate IDS .

BackFlow

2. Record an object sequence

Option 1: Record with a realsense camera (SR300 perfered)

The script is provided to record an object video sequence using a compatible realsense camera. Use record.py for legacy models and record2.py for librealsense SDK 2.0:

python record.py LINEMOD/OBJECTNAME

e.g.,

python record.py LINEMOD/sugar

to record a sequence of a sugar box. By default, the script records for 40 seconds after a countdown of 5. You can change the recording interval or exit the recording by pressing "q". Please steadily move the camera to get different views of the object while maintaining that 2-3 markers are within the field of view of the camera at any time.

Note that the project assumes all sequences are saved under the folder named "LINEMOD", use other folder names will cause an error to occur.

If you use record.py to create your sequence, color images, depth aligned to color images, and camera parameters will be automatically saved under the directory of the sequence.

Option 2: Use an existing sequence or record with other cameras

If you are using other cameras, please put color images (.jpg) in a folder named "JPEGImages" and the aligned depth images (uint16 pngs interpolated over a 8m range) in the "depth" folder. Please note that the algorithm assumes the depth images to be aligned to color images. Name your color images in sequential order from 0.jpg, 1.jpg ... 600.jpg and the corresponding depth images as 0.png ... 600.png, you should also create a file intrinsics.json under the sequence directory and manually input the camera parameters in the format like below:

{"fx": 614.4744262695312, "fy": 614.4745483398438, "height": 480, "width": 640, "ppy": 233.29214477539062, "ppx": 308.8282470703125, "ID": "620201000292"}

If you don't know your camera's intrinsic, you can put a rough estimation in. All parameters required are fx, fy, cx, cy, where commonly fx = fy and equals to the width of the image and cx and cy is the center of the image. For example, for a 640 x 480 resolution image, fx, fy = 640, cx = 320, cy = 240.

An example sequence can be download HERE, create a directory named "LINEMOD", unzip the example sequence, and put the extracted folder (timer) under LINEMOD.

3. Obtain frame transforms

Compute transforms for frames at the specified interval (interval can be changed in config/registrationParameters) against the first frame, save the transforms(4*4 homogenous transforms) as a numpy array (.npy).

python compute_gt_poses.py LINEMOD/sugar

4. Register all frames and create a mesh for the registered scene.

python register_scene.py LINEMOD/sugar

A raw registeredScene.ply will be saved under the specified directory (e.g., LINEMOD/sugar). The registeredScene.ply is a registered pointcloud of the scene that includes the table top, markers, and any other objects exposed during the scanning, with some level of noise removal. The generated mesh looks something like this and requires manual processing in step 5:

BackFlow

Alternatively, you can try skipping all manual efforts by trying register_segmented instead of register_scene.

python register_segmented.py LINEMOD/sugar

By default, register_segmented attempts to removes all unwanted backgrounds and performs surface reconstruction that converts the registered pointcloud into a triangular mesh. If MESHING is set to false, the script will only attempt to remove background and auto-complete the unseen bottom with a flat surface (If FILLBOTTOM is set to true), and you will need to do step 5.

However, register_segmented may fail as it uses some ad hoc methods for segmenting the background, therefore you may need to tune some parameters for it to work with your object. The most important knob to tune is "MAX_RADIUS", which cuts off any depth reading whose Euclidean distance to the center of the aruco markers observed is longer than the value specified. This value is currently set at 0.2 m, if you have a larger object, you may need to increase this value to not cut off parts of your object. Result from running register_segmented looks something like this:

BackFlow

5. Process the registered pointcloud manually (Optional)

(03/03/2019) You can skip step 5 if you are satisfied with the result from running register_segmented.

The registered pointcloud needs to be processed to

  1. Remove background that is not of interest,
  2. Perform surface reconstruction and complete the missing side or vice versa,
  3. Process the reconstructed mesh (you may need to cut parts off and recomplete the missing side),
  4. Make sure that the processed mesh is free of ANY isolated noise.

The end product is a triangular mesh instead of the registered pointcloud generated by the algorithm.

You may find these YouTube tutorials useful: Point cloud to mesh conversion, Point Cloud to Mesh Reconstruction (MeshLab), and this very basic one I recorded.

If you are creating the mesh as a by-product to obtain image masks, or use it for projects like singleshotpose. Only the exact mesh geometry is needed while the appearance is not useful. It's therefore acceptable to "close holes" as shown in the video for planar areas. Also, for symmetrical objects, complete the shape manually by symmetry. If you need the exact texture information for the missing side, you will need to film another sequence exposing the missing side and manually align 2 pointclouds.

6. Create image masks and label files

When you have completed step 1-4 for all customized objects, run

python create_label_files.py all

or

python create_label_files.py LINEMOD/sugar

This step creates a new mesh named foldername.ply (e.g., sugar.ply) whose AABB is centered at the origin and are the same dimensions as the OBB. It also produces image masks (saved under mask), 4 x 4 homogenious transforms in regards to the new mesh (saved under transforms), as well as labels files (saved under labels) which are projections of the 3D bounding box of the object onto the 2D images. The mask files can be used for training and testing purposes for a deep learning project (e.g., mask-rcnn)

Inspect the correctness of the created 3D bounding boxes and masks visually by running:

python inspectMasks.py LINEMOD/sugar

(Optional) Create additional files required by singleshotpose

If you create the mesh file for singleshot pose, you need to open those new mesh files in meshlab and save them again by unchecking the binary format option. Those meshes are used by singleshotpose for evaluation and pose estimation purpose, and singleshotpose cannot read mesh that is binary encoded.

Masks and labels created in step 6 are compatible with singleshotpose. Currently, class labels are assigned in a hacky way (e.g., by the order the folder is grabbed among all sequence folders), if you call create_label for each folder they will be assigned the same label, so please read the printout and change class label manually in create_label_files.py.

In addition, you need to create train and test images

python makeTrainTestfiles.py

and create other required path files

For each of the customized object, create an objectname.data file in the cfg folder

To get the object scale(max vertice distance), you can run

python getmeshscale.py

This should be everything you need for creating a customized dataset for singleshotpose, please don't forget to update the camera calibration parameters in singleshotpose as well.

(Optional) Create bounding box labels for object detection projects

After you complete step 6 (generated image masks). Run:

python get_BBs.py

This creates annotations.csv that contains class labels and bounding box information for all images under LINEMOD folder.

If you encounter any problems with the code, want to report bugs, etc. please contact me at faninedinburgh[at]gmail[dot]com.

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022