HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Import some key/value data to Prometheus custom-built Node Exporter in Python

About the app In one particilar project, i had to import some key/value data to Prometheus. So i have decided to create my custom-built Node Exporter

Hamid Hosseinzadeh 1 May 19, 2022
A NetBox Plugin that gives a UI for generating, comparing and deploying configurations to devices.

netbox_config_plugin - A plugin to generate, compare and deploy configurations This plugin allows you to execute your code to generate a config for a

Jo 11 Dec 21, 2022
Kolibri: the offline app for universal education

Kolibri This repository is for software developers wishing to contribute to Kolibri. If you are looking for help installing, configuring and using Kol

Learning Equality 564 Jan 02, 2023
3D Printed Flip Clock Design and Code

Smart Flip Clock 3D printed smart clock that puts a new twist on old technology. Making The Smart Flip Clock The first thing that must be done for thi

Thomas 105 Oct 17, 2022
Script to quickly get the metrics from Github repos to analyze.

commit-prefix-analysis Script to quickly get the metrics from Github repos to analyze. Setup Install the Github CLI. You'll know its working when runn

David Carpenter 1 Dec 17, 2022
Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates"

Peer Loss functions This repository is the (Multi-Class & Deep Learning) Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels wi

Kushal Shingote 1 Feb 08, 2022
One-stop-shop for docs and test coverage of dbt projects.

dbt-coverage One-stop-shop for docs and test coverage of dbt projects. Why do I need something like this? dbt-coverage is to dbt what coverage.py and

Slido 106 Dec 27, 2022
A jokes python module

Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com/FayasNoushad/Jokes/blob/main/LICENSE Deploy

Fayas Noushad 3 Nov 28, 2021
Refer'd Resume Scanner

Refer'd Resume Scanner I wanted to share a free resource we built to assist applicants with resume building. Our resume scanner identifies potential s

Refer'd 74 Mar 07, 2022
Trackthis - This library can be used to track USPS and UPS shipments.

Trackthis - This library can be used to track USPS and UPS shipments. It has the option of returning the raw API response, or optionally, it can be used to standardize the USPS and UPS responses so t

Aaron Guzman 0 Mar 29, 2022
Wrapper for the undocumented CodinGame API. Can be used both synchronously and asynchronlously.

codingame API wrapper Pythonic wrapper for the undocumented CodinGame API. Installation Python 3.6 or higher is required. Install codingame with pip:

Takos 19 Jun 20, 2022
Python communism - A module for initiating the communist revolution in each of our python modules

Python communist revolution A man once said to abolish the classes or something

758 Jan 03, 2023
India Today Astrology App

India Today Astrology App Introduction This repository contains the code for the Backend setup of the India Today Astrology app as a part of their rec

Pranjal Pratap Dubey 4 May 07, 2022
A script to download all the challenges and files from the CTFd instance.

Python CTFd Downloader A script to download all the challenges and files from the CTFd instance. Installation Clone this repo: git clone https://githu

Jacob Elliott 19 Dec 16, 2022
How to create the game Rock, Paper, Scissors in Python

Rock, Paper, Scissors! If you want to learn how to do interactive games using Python, then this is great start for you. In this code, You will learn h

SplendidSpidey 1 Dec 18, 2021
Audio-analytics for music-producers! Automate tedious tasks such as musical scale detection, BPM rate classification and audio file conversion.

Click here to be re-directed to the Beat Inspect Streamlit Web-App You are a music producer? Let's get in touch via LinkedIn Fundamental Analytics for

Stefan Rummer 11 Dec 27, 2022
Penelope Shell Handler

penelope Penelope is an advanced shell handler. Its main aim is to replace netcat as shell catcher during exploiting RCE vulnerabilities. It works on

293 Dec 30, 2022
A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites.

web check A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites. What it does The script wi

Jaime Álvarez 52 Mar 15, 2022
Simple tools for the Horse Reality webgame

Realtools (Web Tools for Horse Reality) These tools were made on request from a close friend of mine who plays this game. A live instance can be found

shay 0 Sep 06, 2022
This repository contains Python games that I've worked on. You'll learn how to create python games with AI. I try to focus on creating board games without GUI in Jupyter-notebook.

92_Python_Games 🎮 Introduction 👋 This repository contains Python games that I've worked on. You'll learn how to create python games with AI. I try t

Milaan Parmar / Милан пармар / _米兰 帕尔马 166 Jan 01, 2023