[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

Related tags

Deep LearningBE
Overview

TBE

The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning" [arxiv] [code][Project Website]

image

Citation

@inproceedings{wang2021removing,
  title={Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning},
  author={Wang, Jinpeng and Gao, Yuting and Li, Ke and Lin, Yiqi and Ma, Andy J and Cheng, Hao and Peng, Pai and Ji, Rongrong and Sun, Xing},
  booktitle={CVPR},
  year={2021}
}

News

[2020.3.7] The first version of TBE are released!

0. Motivation

  • In camera-fixed situation, the static background in most frames remain similar in pixel-distribution.

  • We ask the model to be temporal sensitive rather than static sensitive.

  • We ask model to filter the additive Background Noise, which means to erasing background in each frame of the video.

Activation Map Visualization of BE

GIF

More hard example

2. Plug BE into any self-supervised learning method in two steps

The impementaion of BE is very simple, you can implement it in two lines by python:

rand_index = random.randint(t)
mixed_x[j] = (1-prob) * x + prob * x[rand_index]

Then, just need define a loss function like MSE:

loss = MSE(F(mixed_x),F(x))

2. Installation

Dataset Prepare

Please refer to [dataset.md] for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)
  • Skvideo.io
  • Matplotlib (gradient_check)

As Kinetics dataset is time-consuming for IO, we decode the avi/mpeg on the fly. Please refer to data/video_dataset.py for details.

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51/Actor-HMDB51
      • hmdb51_sta: the train/val lists of HMDB51_STA
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials, include logs and trained models
    • gradientes:
    • visualization:
    • pretrained_model:
  • src
    • Contrastive
      • data: load data
      • loss: the loss evaluate in this paper
      • model: network architectures
      • scripts: train/eval scripts
      • augmentation: detail implementation of BE augmentation
      • utils
      • feature_extract.py: feature extractor given pretrained model
      • main.py: the main function of pretrain / finetune
      • trainer.py
      • option.py
      • pt.py: BE pretrain
      • ft.py: BE finetune
    • Pretext
      • main.py the main function of pretrain / finetune
      • loss: the loss include classification loss

4. Run

(1). Download dataset lists and pretrained model

A copy of both dataset lists is provided in anonymous. The Kinetics-pretrained models are provided in anonymous.

cd .. && mkdir datasets
mv [path_to_lists] to datasets
mkdir experiments && cd experiments
mkdir pretrained_models && logs
mv [path_to_pretrained_model] to ../experiments/pretrained_model

Download and extract frames of Actor-HMDB51.

wget -c  anonymous
unzip
python utils/data_process/gen_hmdb51_dir.py
python utils/data_process/gen_hmdb51_frames.py

(2). Network Architecture

The network is in the folder src/model/[].py

Method #logits_channel
C3D 512
R2P1D 2048
I3D 1024
R3D 2048

All the logits_channel are feed into a fc layer with 128-D output.

For simply, we divide the source into Contrastive and Pretext, "--method pt_and_ft" means pretrain and finetune in once.

Action Recognition

Random Initialization

For random initialization baseline. Just comment --weights in line 11 of ft.sh. Like below:

#!/usr/bin/env bash
python main.py \
--method ft --arch i3d \
--ft_train_list ../datasets/lists/diving48/diving48_v2_train_no_front.txt \
--ft_val_list ../datasets/lists/diving48/diving48_v2_test_no_front.txt \
--ft_root /data1/DataSet/Diving48/rgb_frames/ \
--ft_dataset diving48 --ft_mode rgb \
--ft_lr 0.001 --ft_lr_steps 10 20 25 30 35 40 --ft_epochs 45 --ft_batch_size 4 \
--ft_data_length 64 --ft_spatial_size 224 --ft_workers 4 --ft_stride 1 --ft_dropout 0.5 \
--ft_print-freq 100 --ft_fixed 0 # \
# --ft_weights ../experiments/kinetics_contrastive.pth

BE(Contrastive)

Kinetics
bash scripts/kinetics/pt_and_ft.sh
UCF101
bash scripts/ucf101/ucf101.sh
Diving48
bash scripts/Diving48/diving48.sh

For Triplet loss optimization and moco baseline, just modify --pt_method

BE (Triplet)

--pt_method be_triplet

BE(Pretext)

bash scripts/hmdb51/i3d_pt_and_ft_flip_cls.sh

or

bash scripts/hmdb51/c3d_pt_and_ft_flip.sh

Notice: More Training Options and ablation study can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

Kinetics Pretrained (I3D)

Method UCF101 HMDB51 Diving48
Random Initialization 57.9 29.6 17.4
MoCo Baseline 70.4 36.3 47.9
BE 86.5 56.2 62.6

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
BE 10.2 27.6 40.5 56.2 76.6

More Visualization

T-SNE

please refer to utils/visualization/t_SNE_Visualization.py for details.

Confusion_Matrix

please refer to utils/visualization/confusion_matrix.py for details.

Acknowledgement

This work is partly based on UEL and MoCo.

License

The code are released under the CC-BY-NC 4.0 LICENSE.

Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022