[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

Related tags

Deep LearningBE
Overview

TBE

The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning" [arxiv] [code][Project Website]

image

Citation

@inproceedings{wang2021removing,
  title={Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning},
  author={Wang, Jinpeng and Gao, Yuting and Li, Ke and Lin, Yiqi and Ma, Andy J and Cheng, Hao and Peng, Pai and Ji, Rongrong and Sun, Xing},
  booktitle={CVPR},
  year={2021}
}

News

[2020.3.7] The first version of TBE are released!

0. Motivation

  • In camera-fixed situation, the static background in most frames remain similar in pixel-distribution.

  • We ask the model to be temporal sensitive rather than static sensitive.

  • We ask model to filter the additive Background Noise, which means to erasing background in each frame of the video.

Activation Map Visualization of BE

GIF

More hard example

2. Plug BE into any self-supervised learning method in two steps

The impementaion of BE is very simple, you can implement it in two lines by python:

rand_index = random.randint(t)
mixed_x[j] = (1-prob) * x + prob * x[rand_index]

Then, just need define a loss function like MSE:

loss = MSE(F(mixed_x),F(x))

2. Installation

Dataset Prepare

Please refer to [dataset.md] for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)
  • Skvideo.io
  • Matplotlib (gradient_check)

As Kinetics dataset is time-consuming for IO, we decode the avi/mpeg on the fly. Please refer to data/video_dataset.py for details.

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51/Actor-HMDB51
      • hmdb51_sta: the train/val lists of HMDB51_STA
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials, include logs and trained models
    • gradientes:
    • visualization:
    • pretrained_model:
  • src
    • Contrastive
      • data: load data
      • loss: the loss evaluate in this paper
      • model: network architectures
      • scripts: train/eval scripts
      • augmentation: detail implementation of BE augmentation
      • utils
      • feature_extract.py: feature extractor given pretrained model
      • main.py: the main function of pretrain / finetune
      • trainer.py
      • option.py
      • pt.py: BE pretrain
      • ft.py: BE finetune
    • Pretext
      • main.py the main function of pretrain / finetune
      • loss: the loss include classification loss

4. Run

(1). Download dataset lists and pretrained model

A copy of both dataset lists is provided in anonymous. The Kinetics-pretrained models are provided in anonymous.

cd .. && mkdir datasets
mv [path_to_lists] to datasets
mkdir experiments && cd experiments
mkdir pretrained_models && logs
mv [path_to_pretrained_model] to ../experiments/pretrained_model

Download and extract frames of Actor-HMDB51.

wget -c  anonymous
unzip
python utils/data_process/gen_hmdb51_dir.py
python utils/data_process/gen_hmdb51_frames.py

(2). Network Architecture

The network is in the folder src/model/[].py

Method #logits_channel
C3D 512
R2P1D 2048
I3D 1024
R3D 2048

All the logits_channel are feed into a fc layer with 128-D output.

For simply, we divide the source into Contrastive and Pretext, "--method pt_and_ft" means pretrain and finetune in once.

Action Recognition

Random Initialization

For random initialization baseline. Just comment --weights in line 11 of ft.sh. Like below:

#!/usr/bin/env bash
python main.py \
--method ft --arch i3d \
--ft_train_list ../datasets/lists/diving48/diving48_v2_train_no_front.txt \
--ft_val_list ../datasets/lists/diving48/diving48_v2_test_no_front.txt \
--ft_root /data1/DataSet/Diving48/rgb_frames/ \
--ft_dataset diving48 --ft_mode rgb \
--ft_lr 0.001 --ft_lr_steps 10 20 25 30 35 40 --ft_epochs 45 --ft_batch_size 4 \
--ft_data_length 64 --ft_spatial_size 224 --ft_workers 4 --ft_stride 1 --ft_dropout 0.5 \
--ft_print-freq 100 --ft_fixed 0 # \
# --ft_weights ../experiments/kinetics_contrastive.pth

BE(Contrastive)

Kinetics
bash scripts/kinetics/pt_and_ft.sh
UCF101
bash scripts/ucf101/ucf101.sh
Diving48
bash scripts/Diving48/diving48.sh

For Triplet loss optimization and moco baseline, just modify --pt_method

BE (Triplet)

--pt_method be_triplet

BE(Pretext)

bash scripts/hmdb51/i3d_pt_and_ft_flip_cls.sh

or

bash scripts/hmdb51/c3d_pt_and_ft_flip.sh

Notice: More Training Options and ablation study can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

Kinetics Pretrained (I3D)

Method UCF101 HMDB51 Diving48
Random Initialization 57.9 29.6 17.4
MoCo Baseline 70.4 36.3 47.9
BE 86.5 56.2 62.6

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
BE 10.2 27.6 40.5 56.2 76.6

More Visualization

T-SNE

please refer to utils/visualization/t_SNE_Visualization.py for details.

Confusion_Matrix

please refer to utils/visualization/confusion_matrix.py for details.

Acknowledgement

This work is partly based on UEL and MoCo.

License

The code are released under the CC-BY-NC 4.0 LICENSE.

Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022