A small example project for efficiently configuring a Python application with YAMLs and the CLI

Overview

Project generated with PyScaffold

Hydra Example Project for Python

A small example project for efficiently configuring a Python application with YAMLs and the CLI.

Why should I care?

A frequent requirement for productive Python application is that they are configurable via configuration files and/or the command-line-interface (CLI). This allows you to change the behavior without touching the source code by e.g. configuring another database URL or the logging verbosity. For the CLI-part, Click is often used and with PyYAML configuration files can be easily read, so where is the problem?

The CLI and configuration file of a Python application have many things in commmon, i.e., both

  1. configure the runtime behaviour of your application,
  2. need to implement validations, e.g. is the port an integer above 1024,
  3. need to be consistent and mergeable, i.e. a CLI flag should be named like the YAML key and if both are passed the CLI overwrites the YAML configuration.

Thus implementing the CLI and configuration by a YAML file seperated from each other, leads to often to code duplication and inconsistent behavior, not to mention the enormous amount of work that must be done to get this right.

With this in mind, Facebook implemented the Hydra library, which allows you to do hierarchical configuration by composition and override it through config files and the command-line. This repository serves as an example project set up to demonstrate the most important features. We also show how Hydra can be used in conjunction with pydantic, which extends the validation capabilities of OmegaConf that is used internally by Hydra.

Ok, so give me the gist of it!

Sure, just take a look into src/my_pkg/cli.py and src/my_pkg/config.py first as these are the only files we added, roughly 70 lines of code. The hierarchical configuration can be found in configs.

├── configs
│   ├── main.yaml             <- entry point for configuration
│   ├── db                    <- database configuration group
│   │   ├── mysql.yaml        <- configuration of MySQL
│   │   └── postgresql.yaml   <- configuration for PostgreSQL
│   └── experiment            <- experiment configuration group
│       ├── exp1.yaml         <- configuration for experiment 1
│       ├── exp2.yaml         <- configuration for experiment 2
│       ├── missing_key.yaml  <- wrong configuration with missing key
│       └── wrong_type.yaml   <- wrong configuration with wrong type

Basically, this structure allows you to mix and match your configuration by choosing for instance the MySQL database with the setup of experiment 2. Each group then corresponds to an attribute in the configuration object, which includes other attributes, just think of a dictionary where some keys are again dictionaries.

We can invoke our application with the console command hydra-test and this will execute the main function in cli.py:

None: # this line actually runs the checks of pydantic OmegaConf.to_object(cfg) print(OmegaConf.to_yaml(cfg)) # we just print the config and wait a few secs # note that IDEs allow auto-complete for accessing the attributes! time.sleep(cfg.main.sleep)">
@hydra.main(config_path=None, config_name="main")
def main(cfg: Config) -> None:
    # this line actually runs the checks of pydantic
    OmegaConf.to_object(cfg)
    print(OmegaConf.to_yaml(cfg)) # we just print the config and wait a few secs
    # note that IDEs allow auto-complete for accessing the attributes!
    time.sleep(cfg.main.sleep)

So executing just hydra-test results in:

Cannot find primary config 'main'. Check that it's in your config search path.

Config search path:
	provider=hydra, path=pkg://hydra.conf
	provider=main, path=pkg://my_pkg
	provider=schema, path=structured://

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

This is due to the fact that we set config_path=None, which is desirable for productive application. The application itself doesn't know where it is gonna be installed and thus defining a path to the configuration files doesn't make sense. For this reason we pass the configuration at execution with -cd, short for --config-dir:

hydra-test -cd configs

This results in the error:

Error executing job with overrides: []
Traceback (most recent call last):
  File ".../hydra-example-project/src/my_pkg/cli.py", line 11, in main
    OmegaConf.to_object(cfg)
omegaconf.errors.MissingMandatoryValue: Structured config of type `Config` has missing mandatory value: experiment
    full_key: experiment
    object_type=Config

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

This is exactly as we want it, since by taking a look into config.py, we see that the schema of the main configuration is:

@dataclass
class Config:
    main: Main
    db: DataBase
    neptune: Neptune
    experiment: Experiment = MISSING

So experiment is a mandatory parameter that the CLI user needs to provide. Thus, we add +experiment=exp1 to select the configuration from exp1.yaml and finally get what we expect:

❯ hydra-test -cd configs +experiment=exp1
main:
  sleep: 3
neptune:
  project: florian.wilhelm/my_expriments
  api_token: ~/.neptune_api_token
  tags:
  - run-1
  description: Experiment run on GCP
  mode: async
db:
  driver: mysql
  host: server_string
  port: 1028
  username: myself
  password: secret
experiment:
  model: XGBoost
  l2: 0.01
  n_steps: 1000

Note that we had to use a plus sign in the flag +experiment as we added the mandatory experiment parameter.

So the section main and neptune are directly defined in main.yaml but why did Hydra now choose the MySQL database? This is due to fact that in main.yaml, we defined some defaults:

# hydra section to build up the config hierarchy with defaults
defaults:
  - _self_
  - base_config
  - db: mysql.yaml
  # experiment: is not mentioned here but in config.py to have a mandatory setting

We can override this default behavior by adding db=postgresql and this time without + as we override a default:

❯ hydra-test -cd configs +experiment=exp1 db=postgresql
Error executing job with overrides: ['+experiment=exp1', 'db=postgresql']
Traceback (most recent call last):
  File ".../hydra-example-project/src/my_pkg/cli.py", line 11, in main
    OmegaConf.to_object(cfg)
pydantic.error_wrappers.ValidationError: 1 validation error for DataBase
port
  Choose a non-privileged port! (type=value_error)

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

Nice this worked as expected by telling us that our port configuration is actually wrong as we chose a privileged port! This is the magic of pydantic doing its validation work. Taking a look into config.py, we see the check that assures a port greater than 1023.

int: if port < 1024: raise ValueError(f"Choose a non-privileged port!") return port port: int username: str password: str">
@dataclass
class DataBase:
    driver: str
    host: str

    @validator("port")
    def validate_some_var(cls, port: int) -> int:
        if port < 1024:
            raise ValueError(f"Choose a non-privileged port!")
        return port

    port: int
    username: str
    password: str

Good, so we could fix our configuration file or pass an extra parameter if we are in a hurry, i.e.:

❯ hydra-test -cd configs +experiment=exp1 db=postgresql db.port=1832
main:
  sleep: 3
neptune:
  project: florian.wilhelm/my_expriments
  api_token: ~/.neptune_api_token
  tags:
  - run-1
  description: Experiment run on GCP
  mode: async
db:
  driver: postgreqsql
  host: server_string
  port: 1832
  username: me
  password: birthday
experiment:
  model: XGBoost
  l2: 0.01
  n_steps: 1000

And this works! So much flexibility and robustness in just 70 lines of code, awesome! While you are at it, you can also run hydra-test -cd configs +experiment=missing_key and hydra-test -cd configs +experiment=wrong_type to see some nice errors from pydantic telling you about a missing key and wrong type of the configuration value, respectively. Hydra and pydantic work nicely together. Just remember to use the dataclass from pydantic, not the standard library and call OmegaConf.to_object(cfg) at the start of your application to fail as early as possible.

Hydra has many more, really nice features. Imagine you want to run now the experiments exp1 and exp2 consecutively, you can just use the --multirun feature, or -m for short:

hydra-test -m -cd configs "+experiment=glob(exp*)"

There's much more to Hydra and several plugins even for hyperparameter optimization exist. So check it out!

BTW, how was this example project set up?

Glad you asked. This project was set up using the miraculous PyScaffold with the dsproject extension. The setup was as simple as:

putup -f hydra-example-project --dsproject -p my_pkg

In order to have the CLI command hydra-test, we changed in setup.cfg the following lines:

# Add here console scripts like:
console_scripts =
     hydra-test = my_pkg.cli:main

Remember to run pip install -e . after any changes to setup.cfg.

Installation & Testing

If you want to play around with this project, just clone it and set up the necessary environment:

  1. create an environment hydra-example-project with the help of conda:
    conda env create -f environment.yml
    
  2. activate the new environment with:
    conda activate hydra-example-project
    

and you are all set to run hydra-test.

Project Organization

├── AUTHORS.md              <- List of developers and maintainers.
├── CHANGELOG.md            <- Changelog to keep track of new features and fixes.
├── CONTRIBUTING.md         <- Guidelines for contributing to this project.
├── Dockerfile              <- Build a docker container with `docker build .`.
├── LICENSE.txt             <- License as chosen on the command-line.
├── README.md               <- The top-level README for developers.
├── configs                 <- Directory for configurations of model & application.
├── data
│   ├── external            <- Data from third party sources.
│   ├── interim             <- Intermediate data that has been transformed.
│   ├── processed           <- The final, canonical data sets for modeling.
│   └── raw                 <- The original, immutable data dump.
├── docs                    <- Directory for Sphinx documentation in rst or md.
├── environment.yml         <- The conda environment file for reproducibility.
├── models                  <- Trained and serialized models, model predictions,
│                              or model summaries.
├── notebooks               <- Jupyter notebooks. Naming convention is a number (for
│                              ordering), the creator's initials and a description,
│                              e.g. `1.0-fw-initial-data-exploration`.
├── pyproject.toml          <- Build configuration. Don't change! Use `pip install -e .`
│                              to install for development or to build `tox -e build`.
├── references              <- Data dictionaries, manuals, and all other materials.
├── reports                 <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures             <- Generated plots and figures for reports.
├── scripts                 <- Analysis and production scripts which import the
│                              actual PYTHON_PKG, e.g. train_model.
├── setup.cfg               <- Declarative configuration of your project.
├── setup.py                <- [DEPRECATED] Use `python setup.py develop` to install for
│                              development or `python setup.py bdist_wheel` to build.
├── src
│   └── my_pkg              <- Actual Python package where the main functionality goes.
├── tests                   <- Unit tests which can be run with `pytest`.
├── .coveragerc             <- Configuration for coverage reports of unit tests.
├── .isort.cfg              <- Configuration for git hook that sorts imports.
└── .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

Note

This project has been set up using PyScaffold 4.1.4 and the dsproject extension 0.7.

Owner
Florian Wilhelm
Data Scientist with a mathematical background.
Florian Wilhelm
Dag-bakery - Dag Bakery enables the capability to define Airflow DAGs via YAML.

DAG Bakery - WIP 🔧 dag-bakery aims to simplify our DAG development by removing all the boilerplate and duplicated code when defining multiple DAG cro

Typeform 2 Jan 08, 2022
A YAML validator for Programming Historian lessons.

phyaml A simple YAML validator for Programming Historian lessons. USAGE: python3 ph-lesson-yaml-validator.py lesson.md The script automatically detect

Riva Quiroga 1 Nov 07, 2021
Scooch Configures Object Oriented Class Hierarchies for python

Scooch Scooch Configures Object Oriented Class Hierarchies for python. A good place to start with Scooch is at the documentation found here. Scooch is

Pandora Media, Inc. 6 Dec 20, 2022
Strict separation of config from code.

Python Decouple: Strict separation of settings from code Decouple helps you to organize your settings so that you can change parameters without having

Henrique Bastos 2.3k Dec 30, 2022
MOHAconfig - Gerador de arquivo de configuração para Medal of Honor: Airborne

MOHAconfig Gerador de arquivo de configuração para Medal of Honor: Airborne MOHA - Gerador de arquivo de configuração. Essa aplicação foi feita em pyt

1 Dec 31, 2021
Simple dataclasses configuration management for Python with hocon/json/yaml/properties/env-vars/dict support.

Simple dataclasses configuration management for Python with hocon/json/yaml/properties/env-vars/dict support, based on awesome and lightweight pyhocon parsing library.

Teo Stocco 62 Dec 23, 2022
A set of Python scripts and notebooks to help administer and configure Workforce projects.

Workforce Scripts A set of Python scripts and notebooks to help administer and configure Workforce projects. Notebooks Several example Jupyter noteboo

Esri 75 Sep 09, 2022
Config files for my GitHub profile.

Hacked This is a python base script from which you can hack or clone any person's facebook friendlist or followers accounts which have simple password

2 Dec 10, 2021
Python 3+ compatible port of the configobj library

configobj Python 3+ compatible port of the configobj library. Documentation You can find a full manual on how to use ConfigObj at readthedocs. If you

Differently Sized Kittens 288 Dec 14, 2022
Napalm-vs-openconfig - Comparison of NAPALM and OpenConfig YANG with NETCONF transport

NAPALM vs NETCONF/OPENCONFIG Abstracts Multi vendor network management and autom

Anton Karneliuk 1 Jan 17, 2022
environs is a Python library for parsing environment variables.

environs: simplified environment variable parsing environs is a Python library for parsing environment variables. It allows you to store configuration

Steven Loria 920 Jan 04, 2023
Sync any your configuration file to remote. Currently only support gist.

Sync your configuration to remote, such as vimrc. You can use EscSync to manage your configure of editor, shell, etc.

Me1onRind 0 Nov 21, 2022
Hydra is a framework for elegantly configuring complex applications

Python Decouple: Strict separation of settings from code Decouple helps you to organize your settings so that you can change parameters without having

Facebook Research 6.6k Jan 04, 2023
Dynamic Django settings.

Constance - Dynamic Django settings A Django app for storing dynamic settings in pluggable backends (Redis and Django model backend built in) with an

Jazzband 1.5k Jan 04, 2023
Load Django Settings from Environmental Variables with One Magical Line of Code

DjEnv: Django + Environment Load Django Settings Directly from Environmental Variables features modify django configuration without modifying source c

Daniel J. Dufour 28 Oct 01, 2022
A small example project for efficiently configuring a Python application with YAMLs and the CLI

Hydra Example Project for Python A small example project for efficiently configuring a Python application with YAMLs and the CLI. Why should I care? A

Florian Wilhelm 4 Dec 31, 2022
A helper for organizing Django project settings by relying on well established programming patterns.

django-configurations django-configurations eases Django project configuration by relying on the composability of Python classes. It extends the notio

Jazzband 955 Jan 05, 2023
sqlconfig: manage your config files with sqlite

sqlconfig: manage your config files with sqlite The problem Your app probably has a lot of configuration in git. Storing it as files in a git repo has

Pete Hunt 4 Feb 21, 2022
Configuration Management for Python ⚙

dynaconf - Configuration Management for Python. Features Inspired by the 12-factor application guide Settings management (default values, validation,

Bruno Rocha 2.8k Jan 06, 2023
Read configuration settings from python configuration files.

Maison Read configuration settings from python configuration files. Motivation When developing a python application, e.g a command-line tool, it can b

9 Jan 04, 2023