State of the art Semantic Sentence Embeddings

Overview

Contrastive Tension

State of the art Semantic Sentence Embeddings

Published Paper · Huggingface Models · Report Bug

Overview

This is the official code accompanied with the paper Semantic Re-Tuning via Contrastive Tension.
The paper was accepted at ICLR-2021 and official reviews and responses can be found at OpenReview.

Contrastive Tension(CT) is a fully self-supervised algorithm for re-tuning already pre-trained transformer Language Models, and achieves State-Of-The-Art(SOTA) sentence embeddings for Semantic Textual Similarity(STS). All that is required is hence a pre-trained model and a modestly large text corpus. The results presented in the paper sampled text data from Wikipedia.

This repository contains:

  • Tensorflow 2 implementation of the CT algorithm
  • State of the art pre-trained STS models
  • Tensorflow 2 inference code
  • PyTorch inference code

Requirements

While it is possible that other versions works equally fine, we have worked with the following:

  • Python = 3.6.9
  • Transformers = 4.1.1

Usage

All the models and tokenizers are available via the Huggingface interface, and can be loaded for both Tensorflow and PyTorch:

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

TF_model = transformers.TFAutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')
PT_model = transformers.AutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

Inference

To perform inference with the pre-trained models (or other Huggigface models) please see the script ExampleBatchInference.py.
The most important thing to remember when running inference is to apply the attention_masks on the batch output vector before mean pooling, as is done in the example script.

CT Training

To run CT on your own models and text data see ExampleTraining.py for a comprehensive example. This file currently creates a dummy corpus of random text. Simply replace this to whatever corpus you like.

Pre-trained Models

Note that these models are not trained with the exact hyperparameters as those disclosed in the original CT paper. Rather, the parameters are from a short follow-up paper currently under review, which once again pushes the SOTA.

All evaluation is done using the SentEval framework, and shows the: (Pearson / Spearman) correlations

Unsupervised / Zero-Shot

As both the training of BERT, and CT itself is fully self-supervised, the models only tuned with CT require no labeled data whatsoever.
The NLI models however, are first fine-tuned towards a natural language inference task, which requires labeled data.

Model Avg Unsupervised STS STS-b #Parameters
Fully Unsupervised
BERT-Distil-CT 75.12 / 75.04 78.63 / 77.91 66 M
BERT-Base-CT 73.55 / 73.36 75.49 / 73.31 108 M
BERT-Large-CT 77.12 / 76.93 80.75 / 79.82 334 M
Using NLI Data
BERT-Distil-NLI-CT 76.65 / 76.63 79.74 / 81.01 66 M
BERT-Base-NLI-CT 76.05 / 76.28 79.98 / 81.47 108 M
BERT-Large-NLI-CT 77.42 / 77.41 80.92 / 81.66 334 M

Supervised

These models are fine-tuned directly with STS data, using a modified version of the supervised training object proposed by S-BERT.
To our knowledge our RoBerta-Large-STSb is the current SOTA model for STS via sentence embeddings.

Model STS-b #Parameters
BERT-Distil-CT-STSb 84.85 / 85.46 66 M
BERT-Base-CT-STSb 85.31 / 85.76 108 M
BERT-Large-CT-STSb 85.86 / 86.47 334 M
RoBerta-Large-CT-STSb 87.56 / 88.42 334 M

Other Languages

Model Language #Parameters
BERT-Base-Swe-CT-STSb Swedish 108 M

License

Distributed under the MIT License. See LICENSE for more information.

Contact

If you have questions regarding the paper, please consider creating a comment via the official OpenReview submission.
If you have questions regarding the code or otherwise related to this Github page, please open an issue.

For other purposes, feel free to contact me directly at: [email protected]

Acknowledgements

Owner
Fredrik Carlsson
Fredrik Carlsson
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022