State of the art Semantic Sentence Embeddings

Overview

Contrastive Tension

State of the art Semantic Sentence Embeddings

Published Paper · Huggingface Models · Report Bug

Overview

This is the official code accompanied with the paper Semantic Re-Tuning via Contrastive Tension.
The paper was accepted at ICLR-2021 and official reviews and responses can be found at OpenReview.

Contrastive Tension(CT) is a fully self-supervised algorithm for re-tuning already pre-trained transformer Language Models, and achieves State-Of-The-Art(SOTA) sentence embeddings for Semantic Textual Similarity(STS). All that is required is hence a pre-trained model and a modestly large text corpus. The results presented in the paper sampled text data from Wikipedia.

This repository contains:

  • Tensorflow 2 implementation of the CT algorithm
  • State of the art pre-trained STS models
  • Tensorflow 2 inference code
  • PyTorch inference code

Requirements

While it is possible that other versions works equally fine, we have worked with the following:

  • Python = 3.6.9
  • Transformers = 4.1.1

Usage

All the models and tokenizers are available via the Huggingface interface, and can be loaded for both Tensorflow and PyTorch:

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

TF_model = transformers.TFAutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')
PT_model = transformers.AutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

Inference

To perform inference with the pre-trained models (or other Huggigface models) please see the script ExampleBatchInference.py.
The most important thing to remember when running inference is to apply the attention_masks on the batch output vector before mean pooling, as is done in the example script.

CT Training

To run CT on your own models and text data see ExampleTraining.py for a comprehensive example. This file currently creates a dummy corpus of random text. Simply replace this to whatever corpus you like.

Pre-trained Models

Note that these models are not trained with the exact hyperparameters as those disclosed in the original CT paper. Rather, the parameters are from a short follow-up paper currently under review, which once again pushes the SOTA.

All evaluation is done using the SentEval framework, and shows the: (Pearson / Spearman) correlations

Unsupervised / Zero-Shot

As both the training of BERT, and CT itself is fully self-supervised, the models only tuned with CT require no labeled data whatsoever.
The NLI models however, are first fine-tuned towards a natural language inference task, which requires labeled data.

Model Avg Unsupervised STS STS-b #Parameters
Fully Unsupervised
BERT-Distil-CT 75.12 / 75.04 78.63 / 77.91 66 M
BERT-Base-CT 73.55 / 73.36 75.49 / 73.31 108 M
BERT-Large-CT 77.12 / 76.93 80.75 / 79.82 334 M
Using NLI Data
BERT-Distil-NLI-CT 76.65 / 76.63 79.74 / 81.01 66 M
BERT-Base-NLI-CT 76.05 / 76.28 79.98 / 81.47 108 M
BERT-Large-NLI-CT 77.42 / 77.41 80.92 / 81.66 334 M

Supervised

These models are fine-tuned directly with STS data, using a modified version of the supervised training object proposed by S-BERT.
To our knowledge our RoBerta-Large-STSb is the current SOTA model for STS via sentence embeddings.

Model STS-b #Parameters
BERT-Distil-CT-STSb 84.85 / 85.46 66 M
BERT-Base-CT-STSb 85.31 / 85.76 108 M
BERT-Large-CT-STSb 85.86 / 86.47 334 M
RoBerta-Large-CT-STSb 87.56 / 88.42 334 M

Other Languages

Model Language #Parameters
BERT-Base-Swe-CT-STSb Swedish 108 M

License

Distributed under the MIT License. See LICENSE for more information.

Contact

If you have questions regarding the paper, please consider creating a comment via the official OpenReview submission.
If you have questions regarding the code or otherwise related to this Github page, please open an issue.

For other purposes, feel free to contact me directly at: [email protected]

Acknowledgements

Owner
Fredrik Carlsson
Fredrik Carlsson
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022