Free course that takes you from zero to Reinforcement Learning PRO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

Overview

The Hands-on Reinforcement Learning course πŸš€

From zero to HERO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

Out of intense complexities, intense simplicities emerge.

-- Winston Churchill

Contents

Welcome to the course πŸ€— ❀️

Welcome to my step by step hands-on-course that will take you from basic reinforcement learning to cutting-edge deep RL.

We will start with a short intro of what RL is, what is it used for, and how does the landscape of current RL algorithms look like.

Then, in each following chapter we will solve a different problem, with increasing difficulty:

  • πŸ† easy
  • πŸ† πŸ† medium
  • πŸ† πŸ† πŸ† hard

Ultimately, the most complex RL problems involve a mixture of reinforcement learning algorithms, optimizations and Deep Learning techniques.

You do not need to know deep learning (DL) to follow along this course.

I will give you enough context to get you familiar with DL philosophy and understand how it becomes a crucial ingredient in modern reinforcement learning.

Lectures

  1. Introduction to Reinforcement Learning
  2. Q-learning to drive a taxi πŸ†
  3. SARSA to beat gravity πŸ†
  4. Parametric Q learning to keep the balance πŸ’ƒ πŸ†
  5. Policy gradients to land on the Moon πŸ†

Wanna contribute?

There are 2 things you can do to contribute to this course:

  1. Spread the word and share it on Twitter, LinkedIn

  2. Open a pull request to fix a bug or improve the code readability.

Thanks ❀️

Special thanks to all the students who contributed with valuable feedback and pull requests ❀

Let's connect!

πŸ‘‰πŸ½ Subscribe to the datamachines newsletter.

πŸ‘‰πŸ½ Follow me on Medium, Twitter, LinkedIn

The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper β€œSpectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
A clean and scalable template to kickstart your deep learning project πŸš€ ⚑ πŸ”₯

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project πŸš€ ⚑ πŸ”₯ Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022