This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Overview

Twitter COVID-19 Sentiment Analysis

Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold

Project Overview

This project seeks to identify any correlation between ∆ daily inoculation rates and ∆ twitter sentiment surrounding COVID-19. We chose the pandemic as our topic because of it's societal relevance and implications as an ongoing event.

Analysis Methods

Integrated Database  

Extract CSV datasets from data sources (referenced above), transforming and cleaning them with Python, and loading the datasets using Amazon Web Services and PostgreSQL (server/database). This allows us to establish connection with our model, and store static data for use during the project.

  • Constructed as an Amazon RDS instance:
    • Connection Parameter: (covidsentiment.cqciwtn1qpki.us-east-2.rds.amazonaws.com)
    • Accessed with a password upon request

Further transformations:

Machine Learning Model

Next, implementing a natural language processing algorithm allows us to gather our sentiment analysis

  • Machine Learning Libraries: nltk, sklearn
  • Description of preliminary data preprocessing
  1. Load historical twitter covid vaccine data from kaggle.

  2. Clean tweets with clean_tweet function(regex), tokenize and get ready for text classification. Also, clean up function for removing hashtags, URL's, mentions, and retweets.

  3. Apply Textblob.sentiment.polarity and Textblob.sentiment.subjectivity, ready for sentiment analysis. textblob_polority_subjectivity

  4. Apply analyze_sentiment function on tweet texts to label texts with sentiment range from -1 (negative) to 1(positve). textblob_analyzer

  5. Plot top 10 words from postivie and negative-resulted words.

  • Description of preliminary feature engineering and preliminary feature selection, including their decision-making process
  1. Import CountVectorizerfrom sklearn.feature_extraction.text. CountVectorizer is a tool provided by the scikit-learn library in Python. It is used to transform a given text into a vector on the basis of the frequency (count) of each word that occurs in the entire text. The value of each cell is nothing but the count of the word in that particular text sample.
  2. Fit sentiment texts features with vectorizer, and target sentiment column.
  • Description of how data was split into training and testing sets Splitting into training and testing set so as to evaluate the classifier. The aim is to get an industry standard sample split of 80% train and 20% test.

  • Explanation of model choice, including limitations and benefits

  1. Naive Bayes classifier is a collection of many algorithms where all the algorithms share one common principle, and that is each feature being classified is not related to any other feature. The algorithm is based on the Bayes theorem and predicts the tag of a text such as a piece of email or newspaper article. It calculates the probability of each tag for a given sample and then gives the tag with the highest probability as output. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).Multinomial Naive Bayes algorithm is a probabilistic learning method that is mostly used in Natural Language Processing (NLP).
  2. Multinomial Naive Bayes classification algorithm tends to be a baseline solution for sentiment analysis task. The basic idea of Naive Bayes technique is to find the probabilities of classes assigned to texts by using the joint probabilities of words and classes.
  3. Naive Bayes algorithm is only used for textual data classification and cannot be used to predict numeric values. The result of naive bayes model provide statistical sense by predicting how often that certain words with the sentimental labels appear, which does not necessarily indicate the factual attitudes/sentiments towards covid vaccine, and it does not work with regression because it is not numerical data. One of the benefits of Naive Bayes is that if its assumption of the independence of features holds true, it can perform better than other models and requires much less training data.
  • Changes of model choice from segment 2 to segment 3
  1. Vader Analysis: VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media. It uses a list of lexical features (e.g. word) which are labeled as positive or negative according to their semantic orientation to calculate the text sentiment. VADER not only tells about the Positivity and Negativity score but also tells us about how positive or negative a sentiment is. VADER Sentiment Analyzer: VADER_sentiment_analyzer VADER_sentiment_compound_scores

  2. Solution to limitations: We discovered the most common words appeared in our twitter dataset are associated with covid vaccines because we retrieved the data with covid vaccine as search terms. Textblob Polarity is float which lies in the range of [-1,1] where 1 means positive statement and -1 means a negative statement. Subjective sentences generally refer to personal opinion, emotion or judgment whereas objective refers to factual information. Subjectivity is also a float which lies in the range of [0,1]. We are trying to process text classification with another function to get more accurate sentiment labels on the tweet texts.

  • Changes from segment 3 to segment 4
  1. Added sentiment "NLTK" which is a votes based combined algorithm encompassing multiple natural language processing techniques.

Regression Results

2 Factor Regression 2 Factor Regression

  1. Initial regressions were positive, with an r^2 value of .29

However, the p value for Textblob was very high, so we removed it:

1 Factor Regression 1 Factor Regression

  1. with one factor removed, the r^2 was still .29, but the p value was 0.000, indicating excellent results.

However, these correlations were against cumulative administration rates. We disaggregated the cumulation and re-ran the regression with 2 factors:

2 Factor Regression - Marginal 2 Factor Regression - Marginal

and the R^2 dropped to close to zero. p-values are corresondingly high.

Dashboard COVID-19 DASHBOARD

  • A blueprint for the dashboard is created and includes all of the following:
  • Storyboard on Google Slide(s)
  • Description of the tool(s) that will be used to create final dashboard
  • Description of interactive element(s)

Presentation

  • Selected topic
  • Why we selected our topic
  • Description of our source of data
  • Questions we hope to answer with the data
  • Description of the data exploration phase of the project
  • Description of the analysis phase of the project
  • Limitations and solutions

Challenges and Limitations

Problems
  • Facebook, Instagram and TikTok were all considered initially, but did not have the necessary data readily available.
  • Some members ran into issues with gaining Academic Twitter accounts to be able to access the Twitter API.
  • After gaining access to tweets our original goal of using the location of tweets was not possible due to most tweets not having geotag data
  • The Twitter API was very limited to the amount of data we could pull. Alternative dataset will be needed.
  • Group ran into a machine learning natural language paradox, where we noticed an issue within our sentiment analysis. When analyzing tweets for Covid-19 Vaccination sentiment (pro/anti-vaccine) when running into a tweet such as “I hate anti-vaxxers”, this would return a negative sentiment when this person is actually pro-vaccine.
  • Using academic accounts only allows access back to 7 days of tweets. We could not get twitter's full archive search without having a twitter scholar account.

Solutions
  • The group decided to use Twitter since it's API was available after submitting applications.
  • Members had to submit extra information to the Twitter developers platform to qualify for academic research accounts
  • Due to lack of geodata, the team decided to switch to using twitter sentiment over time, rather than region
  • The group decided to use a Kaggle Dataset, which provided us with tweets from December 21, 2020.
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022