Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

Overview

PyTorch RL Minimal Implementations

There are implementations of some reinforcement learning algorithms, whose characteristics are as follow:

  1. Less packages-based: Only PyTorch and Gym, for building neural networks and testing algorithms' performance respectively, are necessary to install.
  2. Independent implementation: All RL algorithms are implemented in separate files, which facilitates to understand their processes and modify them to adapt to other tasks.
  3. Various expansion configurations: It's convenient to configure various parameters and tools, such as reward normalization, advantage normalization, tensorboard, tqdm and so on.

RL Algorithms List

Name Type Estimator Paper File
Q-Learning Value-based / Off policy TD Watkins et al. Q-Learning. Machine Learning, 1992 q_learning.py
REINFORCE Policy-based On policy MC Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In NeurIPS, 2000. reinforce.py
DQN Value-based / Off policy TD Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015. doing
A2C Actor-Critic / On policy n-step TD Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016. a2c.py
A3C Actor-Critic / On policy n-step TD .Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016 a3c.py
ACER Actor-Critic / On policy GAE Wang et al. Sample Efficient Actor-Critic with Experience Replay. In ICLR, 2017. doing
ACKTR Actor-Critic / On policy GAE Wu et al. Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In NeurIPS, 2017. doing
PPO Actor-Critic / On policy GAE Schulman et al. Proximal Policy Optimization Algorithms. arXiv, 2017. ppo.py

Quick Start

Requirements

pytorch
gym

tensorboard  # for summary writer
tqdm         # for process bar

Abstract Agent

Components / Parameters

Component Description
policy neural network model
gamma discount factor of cumulative reward
lr learning rate. i.e. lr_actor, lr_critic
lr_decay weight decay to schedule the learning rate
lr_scheduler scheduler for the learning rate
coef_critic_loss coefficient of critic loss
coef_entropy_loss coefficient of entropy loss
writer summary writer to record information
buffer replay buffer to store historical trajectories
use_cuda use GPU
clip_grad gradients clipping
max_grad_norm maximum norm of gradients clipped
norm_advantage advantage normalization
open_tb open summary writer
open_tqdm open process bar

Methods

Methods Description
preprocess_obs() preprocess observation before input into the neural network
select_action() use actor network to select an action based on the policy distribution.
estimate_obs() use critic network to estimate the value of observation
update() update the parameter by calculate losses and gradients
train() set the neural network to train mode
eval() set the neural network to evaluate mode
save() save the model parameters
load() load the model parameters

Update & To-do & Limitations

Update History

  • 2021-12-09 ADD TRICK:norm_critic_loss in PPO
  • 2021-12-09 ADD PARAM: coef_critic_loss, coef_entropy_loss, log_step
  • 2021-12-07 ADD ALGO: A3C
  • 2021-12-05 ADD ALGO: PPO
  • 2021-11-28 ADD ALGO: A2C
  • 2021-11-20 ADD ALGO: Q learning, Reinforce

To-do List

  • ADD ALGO DQN, Double DQN, Dueling DQN, DDPG
  • ADD NN RNN Mode

Current Limitations

  • Unsupport Vectorized environments
  • Unsupport Continuous action space
  • Unsupport RNN-based model
  • Unsupport Imatation learning

Reference & Acknowledgements

Owner
Gemini Light
Gemini Light
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022