Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

Overview

PyTorch RL Minimal Implementations

There are implementations of some reinforcement learning algorithms, whose characteristics are as follow:

  1. Less packages-based: Only PyTorch and Gym, for building neural networks and testing algorithms' performance respectively, are necessary to install.
  2. Independent implementation: All RL algorithms are implemented in separate files, which facilitates to understand their processes and modify them to adapt to other tasks.
  3. Various expansion configurations: It's convenient to configure various parameters and tools, such as reward normalization, advantage normalization, tensorboard, tqdm and so on.

RL Algorithms List

Name Type Estimator Paper File
Q-Learning Value-based / Off policy TD Watkins et al. Q-Learning. Machine Learning, 1992 q_learning.py
REINFORCE Policy-based On policy MC Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In NeurIPS, 2000. reinforce.py
DQN Value-based / Off policy TD Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015. doing
A2C Actor-Critic / On policy n-step TD Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016. a2c.py
A3C Actor-Critic / On policy n-step TD .Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016 a3c.py
ACER Actor-Critic / On policy GAE Wang et al. Sample Efficient Actor-Critic with Experience Replay. In ICLR, 2017. doing
ACKTR Actor-Critic / On policy GAE Wu et al. Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In NeurIPS, 2017. doing
PPO Actor-Critic / On policy GAE Schulman et al. Proximal Policy Optimization Algorithms. arXiv, 2017. ppo.py

Quick Start

Requirements

pytorch
gym

tensorboard  # for summary writer
tqdm         # for process bar

Abstract Agent

Components / Parameters

Component Description
policy neural network model
gamma discount factor of cumulative reward
lr learning rate. i.e. lr_actor, lr_critic
lr_decay weight decay to schedule the learning rate
lr_scheduler scheduler for the learning rate
coef_critic_loss coefficient of critic loss
coef_entropy_loss coefficient of entropy loss
writer summary writer to record information
buffer replay buffer to store historical trajectories
use_cuda use GPU
clip_grad gradients clipping
max_grad_norm maximum norm of gradients clipped
norm_advantage advantage normalization
open_tb open summary writer
open_tqdm open process bar

Methods

Methods Description
preprocess_obs() preprocess observation before input into the neural network
select_action() use actor network to select an action based on the policy distribution.
estimate_obs() use critic network to estimate the value of observation
update() update the parameter by calculate losses and gradients
train() set the neural network to train mode
eval() set the neural network to evaluate mode
save() save the model parameters
load() load the model parameters

Update & To-do & Limitations

Update History

  • 2021-12-09 ADD TRICK:norm_critic_loss in PPO
  • 2021-12-09 ADD PARAM: coef_critic_loss, coef_entropy_loss, log_step
  • 2021-12-07 ADD ALGO: A3C
  • 2021-12-05 ADD ALGO: PPO
  • 2021-11-28 ADD ALGO: A2C
  • 2021-11-20 ADD ALGO: Q learning, Reinforce

To-do List

  • ADD ALGO DQN, Double DQN, Dueling DQN, DDPG
  • ADD NN RNN Mode

Current Limitations

  • Unsupport Vectorized environments
  • Unsupport Continuous action space
  • Unsupport RNN-based model
  • Unsupport Imatation learning

Reference & Acknowledgements

Owner
Gemini Light
Gemini Light
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022