Semantic Segmentation Suite in TensorFlow

Overview

Semantic Segmentation Suite in TensorFlow

alt-text-10

News

What's New

  • This repo has been depricated and will no longer be handling issues. Feel free to use as is :)

Description

This repository serves as a Semantic Segmentation Suite. The goal is to easily be able to implement, train, and test new Semantic Segmentation models! Complete with the following:

  • Training and testing modes
  • Data augmentation
  • Several state-of-the-art models. Easily plug and play with different models
  • Able to use any dataset
  • Evaluation including precision, recall, f1 score, average accuracy, per-class accuracy, and mean IoU
  • Plotting of loss function and accuracy over epochs

Any suggestions to improve this repository, including any new segmentation models you would like to see are welcome!

You can also check out my Transfer Learning Suite.

Citing

If you find this repository useful, please consider citing it using a link to the repo :)

Frontends

The following feature extraction models are currently made available:

Models

The following segmentation models are currently made available:

Files and Directories

  • train.py: Training on the dataset of your choice. Default is CamVid

  • test.py: Testing on the dataset of your choice. Default is CamVid

  • predict.py: Use your newly trained model to run a prediction on a single image

  • helper.py: Quick helper functions for data preparation and visualization

  • utils.py: Utilities for printing, debugging, testing, and evaluation

  • models: Folder containing all model files. Use this to build your models, or use a pre-built one

  • CamVid: The CamVid datatset for Semantic Segmentation as a test bed. This is the 32 class version

  • checkpoints: Checkpoint files for each epoch during training

  • Test: Test results including images, per-class accuracies, precision, recall, and f1 score

Installation

This project has the following dependencies:

  • Numpy sudo pip install numpy

  • OpenCV Python sudo apt-get install python-opencv

  • TensorFlow sudo pip install --upgrade tensorflow-gpu

Usage

The only thing you have to do to get started is set up the folders in the following structure:

├── "dataset_name"                   
|   ├── train
|   ├── train_labels
|   ├── val
|   ├── val_labels
|   ├── test
|   ├── test_labels

Put a text file under the dataset directory called "class_dict.csv" which contains the list of classes along with the R, G, B colour labels to visualize the segmentation results. This kind of dictionairy is usually supplied with the dataset. Here is an example for the CamVid dataset:

name,r,g,b
Animal,64,128,64
Archway,192,0,128
Bicyclist,0,128, 192
Bridge,0, 128, 64
Building,128, 0, 0
Car,64, 0, 128
CartLuggagePram,64, 0, 192
Child,192, 128, 64
Column_Pole,192, 192, 128
Fence,64, 64, 128
LaneMkgsDriv,128, 0, 192
LaneMkgsNonDriv,192, 0, 64
Misc_Text,128, 128, 64
MotorcycleScooter,192, 0, 192
OtherMoving,128, 64, 64
ParkingBlock,64, 192, 128
Pedestrian,64, 64, 0
Road,128, 64, 128
RoadShoulder,128, 128, 192
Sidewalk,0, 0, 192
SignSymbol,192, 128, 128
Sky,128, 128, 128
SUVPickupTruck,64, 128,192
TrafficCone,0, 0, 64
TrafficLight,0, 64, 64
Train,192, 64, 128
Tree,128, 128, 0
Truck_Bus,192, 128, 192
Tunnel,64, 0, 64
VegetationMisc,192, 192, 0
Void,0, 0, 0
Wall,64, 192, 0

Note: If you are using any of the networks that rely on a pre-trained ResNet, then you will need to download the pre-trained weights using the provided script. These are currently: PSPNet, RefineNet, DeepLabV3, DeepLabV3+, GCN.

Then you can simply run train.py! Check out the optional command line arguments:

usage: train.py [-h] [--num_epochs NUM_EPOCHS]
                [--checkpoint_step CHECKPOINT_STEP]
                [--validation_step VALIDATION_STEP] [--image IMAGE]
                [--continue_training CONTINUE_TRAINING] [--dataset DATASET]
                [--crop_height CROP_HEIGHT] [--crop_width CROP_WIDTH]
                [--batch_size BATCH_SIZE] [--num_val_images NUM_VAL_IMAGES]
                [--h_flip H_FLIP] [--v_flip V_FLIP] [--brightness BRIGHTNESS]
                [--rotation ROTATION] [--model MODEL] [--frontend FRONTEND]

optional arguments:
  -h, --help            show this help message and exit
  --num_epochs NUM_EPOCHS
                        Number of epochs to train for
  --checkpoint_step CHECKPOINT_STEP
                        How often to save checkpoints (epochs)
  --validation_step VALIDATION_STEP
                        How often to perform validation (epochs)
  --image IMAGE         The image you want to predict on. Only valid in
                        "predict" mode.
  --continue_training CONTINUE_TRAINING
                        Whether to continue training from a checkpoint
  --dataset DATASET     Dataset you are using.
  --crop_height CROP_HEIGHT
                        Height of cropped input image to network
  --crop_width CROP_WIDTH
                        Width of cropped input image to network
  --batch_size BATCH_SIZE
                        Number of images in each batch
  --num_val_images NUM_VAL_IMAGES
                        The number of images to used for validations
  --h_flip H_FLIP       Whether to randomly flip the image horizontally for
                        data augmentation
  --v_flip V_FLIP       Whether to randomly flip the image vertically for data
                        augmentation
  --brightness BRIGHTNESS
                        Whether to randomly change the image brightness for
                        data augmentation. Specifies the max bightness change
                        as a factor between 0.0 and 1.0. For example, 0.1
                        represents a max brightness change of 10% (+-).
  --rotation ROTATION   Whether to randomly rotate the image for data
                        augmentation. Specifies the max rotation angle in
                        degrees.
  --model MODEL         The model you are using. See model_builder.py for
                        supported models
  --frontend FRONTEND   The frontend you are using. See frontend_builder.py
                        for supported models

Results

These are some sample results for the CamVid dataset with 11 classes (previous research version).

In training, I used a batch size of 1 and image size of 352x480. The following results are for the FC-DenseNet103 model trained for 300 epochs. I used RMSProp with learning rate 0.001 and decay 0.995. I did not use any data augmentation like in the paper. I also didn't use any class balancing. These are just some quick and dirty example results.

Note that the checkpoint files are not uploaded to this repository since they are too big for GitHub (greater than 100 MB)

Class Original Accuracy My Accuracy
Sky 93.0 94.1
Building 83.0 81.2
Pole 37.8 38.3
Road 94.5 97.5
Pavement 82.2 87.9
Tree 77.3 75.5
SignSymbol 43.9 49.7
Fence 37.1 69.0
Car 77.3 87.0
Pedestrian 59.6 60.3
Bicyclist 50.5 75.3
Unlabelled N/A 40.9
Global 91.5 89.6
Loss vs Epochs Val. Acc. vs Epochs
alt text-1 alt text-2
Original GT Result
alt-text-3 alt-text-4 alt-text-5
Owner
George Seif
Machine Learning Engineer | twitter.com/GeorgeSeif94
George Seif
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022