Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Overview

Smaller Multilingual Transformers

This repository shares smaller versions of multilingual transformers that keep the same representations offered by the original ones. The idea came from a simple observation: after massively multilingual pretraining, not all embeddings are needed to perform finetuning and inference. In practice one would rarely require a model that supports more than 100 languages as the original mBERT. Therefore, we extracted several smaller versions that handle fewer languages. Since most of the parameters of multilingual transformers are located in the embeddings layer, our models are between 21% and 45% smaller in size.

The table bellow compares two of our exracted versions with the original mBERT. It shows the models size, memory footprint and the obtained accuracy on the XNLI dataset (Cross-lingual Transfer from english for french). These measurements have been computed on a Google Cloud n1-standard-1 machine (1 vCPU, 3.75 GB).

Model Num parameters Size Memory Accuracy
bert-base-multilingual-cased 178 million 714 MB 1400 MB 73.8
Geotrend/bert-base-15lang-cased 141 million 564 MB 1098 MB 74.1
Geotrend/bert-base-en-fr-cased 112 million 447 MB 878 MB 73.8

Reducing the size of multilingual transformers facilitates their deployment on public cloud platforms. For instance, Google Cloud Platform requires that the model size on disk should be lower than 500 MB for serveless deployments (Cloud Functions / Cloud ML).

For more information, please refer to our paper: Load What You Need.

Available Models

Until now, we generated 70 smaller models from the original mBERT cased version. These models have been uploaded to the Hugging Face Model Hub in order to facilitate their use: https://huggingface.co/Geotrend.

They can be downloaded easily using the transformers library:

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-cased")

More models will be released soon.

Generating new Models

We also share a python script that allows users to generate smaller transformers by their own based on a subset of the original vocabulary (the method does not only concern multilingual transformers):

pip install -r requirements.txt

python3 reduce_model.py \
	--source_model bert-base-multilingual-cased \
	--vocab_file vocab_5langs.txt \
	--output_model bert-base-5lang-cased \
	--convert_to_tf False

Where:

  • --source_model is the multilingual transformer to reduce
  • --vocab_file is the intended vocabulary file path
  • --output_model is the name of the final reduced model
  • --convert_to_tf tells the scipt whether to generate a tenserflow version or not

How to Cite

@inproceedings{smallermbert,
  title={Load What You Need: Smaller Versions of Multilingual BERT},
  author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
  booktitle={SustaiNLP / EMNLP},
  year={2020}
}

Contact

Please contact [email protected] for any question, feedback or request.

Owner
Geotrend
Geotrend
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022