Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Overview

Amber Electric Usage Summary

This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

You simply need to provide your Amber API token, and the tool will output a CSV like this for the last 12 months:

CHANNEL                         , 2020-09-01, 2020-09-02, 2020-09-03, ...
B4 (FEED_IN) Usage (kWh)        ,      1.351,      0.463,      0.447, ...
E3 (CONTROLLED_LOAD) Usage (kWh),      2.009,      2.669,      2.757, ...
E4 (GENERAL) Usage (kWh)        ,     20.400,     20.965,     16.011, ...

About Amber Electric

Amber Electric is an innovative energy retailer in Australia which gives customers access to the wholesale energy price as determined by the National Energy Market. This gives customers the opportunity to reduce their bills and their reliance on fossil fuels by shifting their biggest energy usage to times of the day when energy is cheaper and greener.

Amber's API

Amber gives customers access to a LOT of their own data through their public Application Programming Interface or API.

This tool relies on you having access to Amber's API, which means you need to be an Amber customer, and you need to get an API token. But that's pretty easy. Start here.

How To Get The Tool

If you're a programmer comfortable with Git, I'm sure you already know how to get this code onto your machine from GitHub.

If you're not familiar with Git, you can download this code as a Zip file by clicking on this link. Once it's downloaded, unzip the file, which will create a directory containing all the files of this project.

How To Use It

Pre-Requisites

You'll need Python 3.9+ installed.

And an Amber API token. (See above)

Setup

Using a terminal, in the directory of this project:

  1. Create a Python virtual environment with this command:
python3.9  -m  venv  venv
  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Install the required dependencies with this command:
python  -m  pip  install  -r  requirements.txt

Running the tool

Using a terminal, in the directory of this project:

  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Run the tool with this command, replacing YOUR_API_TOKEN with your own API token:
python  amber_usage_summary.py  --api-token  YOUR_API_TOKEN  >  my_amber_usage_data.csv

Using the above, your summary consumption data for the last year will be saved to the file called my_amber_usage_data.csv in the same directory.

Options

Help

Run the script with the -h option to see its help page:

python  amber_usage_summary.py  -h

API Token File

If you'd prefer not to paste your API token into a terminal command, you can save it in a file called apitoken in the project's directory.

Costs Summary

By default, the tool just outputs energy consumption data. If you also want a summary of your cost data, add the --include-cost option:

python  amber_usage_summary.py  --include-cost

Site Selection

If you have multiple sites in your Amber Electric account, you'll need to select one using the --site-id option:

python  amber_usage_summary.py  --site-id  SITE_ID_YOU_WANT_DATA_FOR

Date Range

By default, the report includes the last 12 full calendar months of data, plus all of the current month's data up until yesterday. You can select what date range to include in the output by adding and start date and, optionally, an end date to the command.

python  amber_usage_summary.py  2020-07-01  2021-06-30

Contributions

I'm open to accepting contributions that improve the tool.

If you're planning on altering the code with the intention of contributing the changes back, it'd be great to have a chat about it first to check we're on the same page about how the improvement might be added. It's probably easiest to create an issue describing your planned improvement (and being clear that you plan to implement it yourself).

License

All files in this project are licensed under the 3-clause BSD License. See LICENSE.md for details.

Owner
Graham Lea
Graham Lea
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023