Have you ever wondered how cool it would be to have your own A.I

Overview

python-with-AI

create import pyttsx3 #pip install pyttsx3 import speech_recognition as sr #pip intall speech recongnition import datetime import wikipedia #pip install wikipedia import webbrowser import os import smtplib

engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices')

print(voices[1].id)

engine.setProperty('voice', voices[0].id)

def speak(audio): engine.say(audio) engine.runAndWait()

def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning!")

elif hour>=12 and hour<18:
    speak("Good Afternoon!")   

else:
    speak("Good Evening!")  

speak("I am Jarvis Sir. Please tell me how may I help you")       

def takeCommand(): #It takes microphone input from the user and returns string output

r = sr.Recognizer()
with sr.Microphone() as source:
    print("Listening...")
    r.pause_threshold = 1
    audio = r.listen(source)

try:
    print("Recognizing...")    
    query = r.recognize_google(audio, language='en-in')
    print(f"User said: {query}\n")

except Exception as e:
    # print(e)    
    print("Say that again please...")  
    return "None"
return query

def sendEmail(to, content): server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login('[email protected]', 'your-password') server.sendmail('[email protected]', to, content) server.close()

if name == "main": wishMe() while True: # if 1: query = takeCommand().lower()

    # Logic for executing tasks based on query
    if 'wikipedia' in query:
        speak('Searching Wikipedia...')
        query = query.replace("wikipedia", "")
        results = wikipedia.summary(query, sentences=2)
        speak("According to Wikipedia")
        print(results)
        speak(results)

    elif 'open youtube' in query:
        webbrowser.open("youtube.com")

    elif 'open google' in query:
        webbrowser.open("google.com")

    elif 'open stackoverflow' in query:
        webbrowser.open("stackoverflow.com")   


    elif 'play music' in query:
        music_dir = 'D:\\Non Critical\\songs\\Favorite Songs2'
        songs = os.listdir(music_dir)
        print(songs)    
        os.startfile(os.path.join(music_dir, songs[0]))

    elif 'the time' in query:
        strTime = datetime.datetime.now().strftime("%H:%M:%S")    
        speak(f"Sir, the time is {strTime}")

    elif 'open code' in query:
        codePath = "C:\\Users\\harsh\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe"
        os.startfile(codePath)

    elif 'email to harry' in query:
        try:
            speak("What should I say?")
            content = takeCommand()
            to = "[email protected]"    
            sendEmail(to, content)
            speak("Email has been sent!")
        except Exception as e:
            print(e)
            speak("Sorry my friend harsh bhai. I am not able to send this email")    
Owner
Harsh Gupta
Harsh Gupta
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023