FireFlyer Record file format, writer and reader for DL training samples.

Overview

FFRecord

The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux Asynchronous Input/Output (AIO) read.

File Format

Storage Layout:

+-----------------------------------+---------------------------------------+
|         checksum                  |             N                         |
+-----------------------------------+---------------------------------------+
|         checksums                 |           offsets                     |
+---------------------+---------------------+--------+----------------------+
|      sample 1       |      sample 2       | ....   |      sample N        |
+---------------------+---------------------+--------+----------------------+

Fields:

field size (bytes) description
checksum 4 CRC32 checksum of metadata
N 8 number of samples
checksums 4 * N CRC32 checksum of each sample
offsets 8 * N byte offset of each sample
sample i offsets[i + 1] - offsets[i] data of the i-th sample

Get Started

Requirements

Install

pip3 install ffrecord

Usage

We provide ffrecord.FileWriter and ffrecord.FileReader for reading and writing, respectively.

Write

To create a FileWriter object, you need to specify a file name and the total number of samples. And then you could call FileWriter.write_one() to write a sample to the FFRecord file. It accepts bytes or bytearray as input and appends the data to the end of the opened file.

from ffrecord import FileWriter


def serialize(sample):
    """ Serialize a sample to bytes or bytearray

    You could use anything you like to serialize the sample.
    Here we simply use pickle.dumps().
    """
    return pickle.dumps(sample)


samples = [i for i in range(100)]  # anything you would like to store
fname = 'test.ffr'
n = len(samples)  # number of samples to be written
writer = FileWriter(fname, n)

for i in range(n):
    data = serialize(samples[i])  # data should be bytes or bytearray
    writer.write_one(data)

writer.close()

Read

To create a FileReader object, you only need to specify the file name. And then you could call FileWriter.read() to read multiple samples from the FFReocrd file. It accepts a list of indices as input and outputs the corresponding samples data.

The reader would validate the checksum before returning the data if check_data = True.

from ffrecord import FileReader


def deserialize(data):
    """ deserialize bytes data

    The deserialize method should be paired with the serialize method above.
    """
    return pickle.loads(data)


fname = 'test.ffr'
reader = FileReader(fname, check_data=True)
print(f'Number of samples: {reader.n}')

indices = [3, 6, 0, 10]      # indices of each sample
data = reader.read(indices)  # return a list of bytes data

for i in range(n):
    sample = deserialize(data[i])
    # do what you want

reader.close()

Dataset and DataLoader for PyTorch

We also provide ffrecord.torch.Dataset and ffrecord.torch.DataLoader for PyTorch users to train models using FFRecord.

Different from torch.utils.data.Dataset which accepts an index as input and returns one sample, ffrecord.torch.Dataset accepts a batch of indices as input and returns a batch of samples. One advantage of ffrecord.torch.Dataset is that it could read a batch of data at a time using Linux AIO.

We first read a batch of bytes data from the FFReocrd file and then pass the bytes data to process() function. Users need to inherit from ffrecord.torch.Dataset and define their custom process() function.

Pipline:   indices ----------------------------> bytes -------------> samples
                      reader.read(indices)               process()

For example:

class CustomDataset(ffrecord.torch.Dataset):

    def __init__(self, fname, check_data=True, transform=None):
        super().__init__(fname, check_data)
        self.transform = transform

    def process(self, indices, data):
        # deserialize data
        samples = [pickle.loads(b) for b in data]

        # transform data
        if self.transform:
            samples = [self.transform(s) for s in samples]
        return samples

dataset = CustomDataset('train.ffr')
indices = [3, 4, 1, 0]
samples = dataset[indices]

ffrecord.torch.Dataset could be combined with ffrecord.torch.DataLoader just like PyTorch.

dataset = CustomDataset('train.ffr')
loader = ffrecord.torch.DataLoader(dataset,
                                   batch_size=16,
                                   shuffle=True,
                                   num_workers=8)

for i, batch in enumerate(loader):
    # training model
You might also like...
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play around in the Colab notebook provided. Note that, in both cases, you will need to train a WaveGAN model first

Text to speech is a process to convert any text into voice. Text to speech project takes words on digital devices and convert them into audio. Here I have used Google-text-to-speech library popularly known as gTTS library to convert text file to .mp3 file. Hope you like my project!
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Comments
  • install error

    install error

    When I install ffrecord with python setup.py install, it failed with the following errors:

    running install
    running bdist_egg
    running egg_info
    creating ffrecord.egg-info
    writing ffrecord.egg-info/PKG-INFO
    writing dependency_links to ffrecord.egg-info/dependency_links.txt
    writing requirements to ffrecord.egg-info/requires.txt
    writing top-level names to ffrecord.egg-info/top_level.txt
    writing manifest file 'ffrecord.egg-info/SOURCES.txt'
    reading manifest file 'ffrecord.egg-info/SOURCES.txt'
    writing manifest file 'ffrecord.egg-info/SOURCES.txt'
    installing library code to build/bdist.linux-x86_64/egg
    running install_lib
    running build_py
    creating build
    creating build/lib.linux-x86_64-3.7
    creating build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/fileio.py -> build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/__init__.py -> build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/utils.py -> build/lib.linux-x86_64-3.7/ffrecord
    creating build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/__init__.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/dataset.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/dataloader.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    running build_ext
    -- The C compiler identification is GNU 7.5.0
    -- The CXX compiler identification is GNU 7.5.0
    -- Detecting C compiler ABI info
    -- Detecting C compiler ABI info - done
    -- Check for working C compiler: /usr/bin/cc - skipped
    -- Detecting C compile features
    -- Detecting C compile features - done
    -- Detecting CXX compiler ABI info
    -- Detecting CXX compiler ABI info - done
    -- Check for working CXX compiler: /usr/bin/c++ - skipped
    -- Detecting CXX compile features
    -- Detecting CXX compile features - done
    -- Found PythonInterp: /opt/conda/bin/python (found version "3.7.10") 
    -- Found PythonLibs: /opt/conda/lib/libpython3.7m.so
    -- Performing Test HAS_CPP14_FLAG
    -- Performing Test HAS_CPP14_FLAG - Success
    -- Performing Test HAS_CPP11_FLAG
    -- Performing Test HAS_CPP11_FLAG - Success
    -- Performing Test HAS_LTO_FLAG
    -- Performing Test HAS_LTO_FLAG - Success
    -- Configuring done
    -- Generating done
    -- Build files have been written to: /root/ffrecord/build/temp.linux-x86_64-3.7
    [ 20%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/reader.cpp.o
    [ 40%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/writer.cpp.o
    [ 60%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/utils.cpp.o
    [ 80%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘void ffrecord::WriterWrapper::write_one_wrapper(const pybind11::buffer&)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:22:44: error: passing ‘const pybind11::buffer’ as ‘this’ argument discards qualifiers [-fpermissive]
             py::buffer_info info = buf.request();
                                                ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:832:17: note:   in call to ‘pybind11::buffer_info pybind11::buffer::request(bool)’
         buffer_info request(bool writable = false) {
                     ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘std::vector<pybind11::array> ffrecord::ReaderWrapper::read_batch_wrapper(const std::vector<long int>&)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:41:59: error: invalid conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
                 auto capsule = py::capsule(b.data, free_buffer);
                                                               ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array ffrecord::ReaderWrapper::read_one_wrapper(int64_t)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:49:55: error: invalid conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(b.data, free_buffer);
                                                           ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array_t<long int> ffrecord::ReaderWrapper::get_offsets(int)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:55:58: error: invalid user-defined conversion from ‘ffrecord::ReaderWrapper::get_offsets(int)::<lambda(void*)>’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                              ^
    /root/ffrecord/ffrecord/src/bindings.cpp:55:54: note: candidate is: ffrecord::ReaderWrapper::get_offsets(int)::<lambda(void*)>::operator void (*)(void*)() const <near match>
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                          ^
    /root/ffrecord/ffrecord/src/bindings.cpp:55:54: note:   no known conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array_t<unsigned int> ffrecord::ReaderWrapper::get_checksums(int)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:61:58: error: invalid user-defined conversion from ‘ffrecord::ReaderWrapper::get_checksums(int)::<lambda(void*)>’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                              ^
    /root/ffrecord/ffrecord/src/bindings.cpp:61:54: note: candidate is: ffrecord::ReaderWrapper::get_checksums(int)::<lambda(void*)>::operator void (*)(void*)() const <near match>
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                          ^
    /root/ffrecord/ffrecord/src/bindings.cpp:61:54: note:   no known conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: At global scope:
    /root/ffrecord/ffrecord/src/bindings.cpp:67:16: error: expected constructor, destructor, or type conversion before ‘(’ token
     PYBIND11_MODULE(_ffrecord_cpp, m) {
                    ^
    CMakeFiles/_ffrecord_cpp.dir/build.make:117: recipe for target 'CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o' failed
    make[2]: *** [CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o] Error 1
    CMakeFiles/Makefile2:82: recipe for target 'CMakeFiles/_ffrecord_cpp.dir/all' failed
    make[1]: *** [CMakeFiles/_ffrecord_cpp.dir/all] Error 2
    Makefile:90: recipe for target 'all' failed
    make: *** [all] Error 2
    Traceback (most recent call last):
      File "setup.py", line 24, in <module>
        ext_modules=[cpp_module]
      File "/opt/conda/lib/python3.7/site-packages/setuptools/__init__.py", line 153, in setup
        return distutils.core.setup(**attrs)
      File "/opt/conda/lib/python3.7/distutils/core.py", line 148, in setup
        dist.run_commands()
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 966, in run_commands
        self.run_command(cmd)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install.py", line 67, in run
        self.do_egg_install()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install.py", line 109, in do_egg_install
        self.run_command('bdist_egg')
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/bdist_egg.py", line 164, in run
        cmd = self.call_command('install_lib', warn_dir=0)
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/bdist_egg.py", line 150, in call_command
        self.run_command(cmdname)
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install_lib.py", line 11, in run
        self.build()
      File "/opt/conda/lib/python3.7/distutils/command/install_lib.py", line 107, in build
        self.run_command('build_ext')
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/build_ext.py", line 79, in run
        _build_ext.run(self)
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 340, in run
        self.build_extensions()
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 449, in build_extensions
        self._build_extensions_serial()
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 474, in _build_extensions_serial
        self.build_extension(ext)
      File "/root/ffrecord/cmake_build.py", line 118, in build_extension
        ["cmake", "--build", "."] + build_args, cwd=self.build_temp
      File "/opt/conda/lib/python3.7/subprocess.py", line 363, in check_call
        raise CalledProcessError(retcode, cmd)
    subprocess.CalledProcessError: Command '['cmake', '--build', '.']' returned non-zero exit status 2.
    
    bug install 
    opened by jimchenhub 3
  • Error of 0' failed. Number of submitted requests: -22"">

    Error of "RuntimeError: 'ns > 0' failed. Number of submitted requests: -22"

    I apply the sample code from README, but an error occurred in data = self.reader.read(indices) of the __getitem__ method in ffrecord.torch.dataset module. The following are more detailed error messages:


    -- Process 1 terminated with the following error:
    Traceback (most recent call last):
      File "xxxx/python3.8/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
        fn(i, *args)
      File "xxxx.py", line 172, in worker
        trainer.train(args, gpu_id, rank, train_loader, model, optimizer, scheduler, train_sampler)
      File "xxxx.py", line 39, in train
        for step, batch in enumerate(loader):
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
        data = self._next_data()
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 1224, in _next_data
        return self._process_data(data)
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 1250, in _process_data
        data.reraise()
      File "xxxx/python3.8/site-packages/site-packages/torch/_utils.py", line 457, in reraise
        raise exception
    RuntimeError: Caught RuntimeError in DataLoader worker process 0.
    Original Traceback (most recent call last):
      File "xxxx/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
        data = fetcher.fetch(index)
      File "xxxx/python3.8/site-packages/ffrecord-1.3.2+35c6863-py3.8-linux-x86_64.egg/ffrecord/torch/dataloader.py", line 151, in fetch
        data = self.dataset[indexes]
      File "xxx.py", line 34, in __getitem__
        data = self.reader.read(indices)
    RuntimeError: 'ns > 0' failed. Number of submitted requests: -22
    Error in std::vector<ffrecord::MemBlock> ffrecord::FileReader::read_batch(const std::vector<long int>&) at xxx/ffrecord/ffrecord/src/reader.cpp line 225
    

    What might be the cause of this error?

    opened by xlxwalex 7
189 Jan 02, 2023
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023