Spearmint Bayesian optimization codebase

Overview

Spearmint

Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code name spearmint) in a manner that iteratively adjusts a number of parameters so as to minimize some objective in as few runs as possible.

IMPORTANT: Spearmint is under an Academic and Non-Commercial Research Use License. Before using spearmint please be aware of the license. If you do not qualify to use spearmint you can ask to obtain a license as detailed in the license or you can use the older open source code version (which is somewhat outdated) at https://github.com/JasperSnoek/spearmint.

Relevant Publications

Spearmint implements a combination of the algorithms detailed in the following publications:

Practical Bayesian Optimization of Machine Learning Algorithms  
Jasper Snoek, Hugo Larochelle and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2012  

Multi-Task Bayesian Optimization  
Kevin Swersky, Jasper Snoek and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2013  

Input Warping for Bayesian Optimization of Non-stationary Functions  
Jasper Snoek, Kevin Swersky, Richard Zemel and Ryan Prescott Adams  
International Conference on Machine Learning, 2014  

Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology  
Jasper Snoek, PhD Thesis, University of Toronto, 2013  

Bayesian Optimization with Unknown Constraints
Michael Gelbart, Jasper Snoek and Ryan Prescott Adams
Uncertainty in Artificial Intelligence, 2014

Setting up Spearmint

STEP 1: Installation

  1. Install python, numpy, scipy, pymongo. For academic users, the anaconda distribution is great. Use numpy 1.8 or higher. We use python 2.7.
  2. Download/clone the spearmint code
  3. Install the spearmint package using pip: pip install -e \</path/to/spearmint/root\> (the -e means changes will be reflected automatically)
  4. Download and install MongoDB: https://www.mongodb.org/
  5. Install the pymongo package using e.g., pip pip install pymongo or anaconda conda install pymongo

STEP 2: Setting up your experiment

  1. Create a callable objective function. See ./examples/simple/branin.py as an example
  2. Create a config file. There are 3 example config files in the ../examples directory. Note 1: There are more parameters that can be set in the config files than what is shown in the examples, but these parameters all have default values. Note 2: By default Spearmint assumes your function is noisy (non-deterministic). If it is noise-free, you should set this explicitly as in the ../examples/simple/config.json file.

STEP 3: Running spearmint

  1. Start up a MongoDB daemon instance:
    mongod --fork --logpath <path/to/logfile\> --dbpath <path/to/dbfolder\>
  2. Run spearmint: python main.py \</path/to/experiment/directory\>

STEP 4: Looking at your results
Spearmint will output results to standard out / standard err. You can also load the results from the database and manipulate them directly.

Owner
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Ryan Adams' research group. Formerly at Harvard, now at Princeton. New Github repositories here: https://github.com/PrincetonLIPS
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022