Benchmark for Answering Existential First Order Queries with Single Free Variable

Overview

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs

This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1 stands for the Existential First Order Queries with Single Free Varibale. The related paper has been submitted to the NeurIPS 2021 track on dataset and benchmark. OpenReview Link, and appeared on arXiv

If this work helps you, please cite

@article{EFO-1-QA,
  title={Benchmarking the Combinatorial Generalizability of Complex Query Answering on Knowledge Graphs},
  author={Wang, Zihao and Yin, Hang and Song, Yangqiu},
  journal={arXiv preprint arXiv:2109.08925},
  year={2021}
}

The pipeline overview.

alt text

  1. Query type generation and normalization The query types are generated by the DFS iteration of the context free grammar with the bounded negation hypothesis. The generated types are also normalized to several normal forms
  2. Query grounding and answer sampling The queries are grounded on specific knowledge graphs and the answers that are non-trivial are sampled.
  3. Model training and estimation We train and evaluate the specific query structure

Query type generation and normalization

The OpsTree is represented in the nested objects of FirstOrderSetQuery class in fol/foq_v2.py. We first generate the specific OpsTree and then store then by the formula property of FirstOrderSetQuery.

The OpsTree is generated by binary_formula_iterator in fol/foq_v2.py. The overall process is managed in formula_generation.py.

To generate the formula, just run

python formula_generation.py

Then the file formula csv is generated in the outputs folder. In this paper, we use the file in outputs/test_generated_formula_anchor_node=3.csv

Query grounding and answer sampling

We first prepare the KG data and then run the sampling code

The KG data (FB15k, FB15k-237, NELL995) should be put into under 'data/' folder. We use the data provided in the KGReasoning.

The structure of the data folder should be at least

data
	|---FB15k-237-betae
	|---FB15k-betae
	|---NELL-betae	

Then we can run the benchmark sampling code on specific knowledge graph by

python benchmark_sampling.py --knowledge_graph FB15k-237 
python benchmark_sampling.py --knowledge_graph FB15k
python benchmark_sampling.py --knowledge_graph NELL

Append new forms to existing data One can append new forms to the existing dataset by

python append_new_normal_form.py --knowledge_graph FB15k-237 

Model training and estimation

Models

Examples

The detailed setting of hyper-parameters or the knowledge graph to choose are in config folder, you can modify those configurations to create your own, all the experiments are on FB15k-237 by default.

Besides, the generated benchmark, one can also use the BetaE dataset after converting to our format by running:

python transform_beta_data.py

Use one of the commands in the following, depending on the choice of models:

python main.py --config config/{data_type}_{model_name}.yaml
  • The data_type includes benchmark and beta
  • The model_name includes BetaE, LogicE, NewLook and Query2Box

If you need to evaluate on the EFO-1-QA benchmark, be sure to load from existing model checkpoint, you can train one on your own or download from here:

python main.py --config config/benchmark_beta.yaml --checkpoint_path ckpt/FB15k/Beta_full
python main.py --config config/benchmark_NewLook.yaml --checkpoint_path ckpt/FB15k/NLK_full --load_step 450000
python main.py --config config/benchmark_Logic.yaml --checkpoint_path ckpt/FB15k/Logic_full --load_step 450000

We note that the BetaE checkpoint above is trained from KGReasoning

Paper Checklist

  1. For all authors..

    (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? Yes

    (b) Have you read the ethics review guidelines and ensured that your paper conforms to them? Yes

    (c) Did you discuss any potential negative societal impacts of your work? No

    (d) Did you describe the limitations of your work? Yes

  2. If you are including theoretical results...

    (a) Did you state the full set of assumptions of all theoretical results? N/A

    (b) Did you include complete proofs of all theoretical results? N/A

  3. If you ran experiments...

    (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? Yes

    (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? Yes

    (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? No

    (d) Did you include the amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? No

  4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

    (a) If your work uses existing assets, did you cite the creators? Yes

    (b) Did you mention the license of the assets? No

    (c) Did you include any new assets either in the supplemental material or as a URL? Yes

    (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? N/A

    (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? N/A

  5. If you used crowdsourcing or conducted research with human subjects...

    (a) Did you include the full text of instructions given to participants and screenshots, if applicable? N/A

    (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? N/A

    (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? N/A

Owner
HKUST-KnowComp
Knowledge Computation [email protected], led by Yangqiu Song
HKUST-KnowComp
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022