Efficient face emotion recognition in photos and videos

Overview

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficient audiovisual analysis of dynamical changes in emotional state based on information-theoretic approach).

Our approach is described in the arXiv paper published at IEEE SISY 2021. The extended version of this paper is under considereation in the international journal.

All the models were pre-trained for face identification task using VGGFace2 dataset. In order to train PyTorch models, SAM code was borrowed.

We upload several models that obtained the state-of-the-art results for AffectNet dataset. The facial features extracted by these models lead to the state-of-the-art accuracy of face-only models on video datasets from EmotiW 2019, 2020 challenges: AFEW (Acted Facial Expression In The Wild), VGAF (Video level Group AFfect) and EngageWild.

Here are the accuracies measure on the testing set of above-mentioned datasets:

Model AffectNet (8 classes), original AffectNet (8 classes), aligned AffectNet (7 classes), original AffectNet (7 classes), aligned AFEW VGAF
mobilenet_7.h5 - - 64.71 - 55.35 68.92
enet_b0_8_best_afew.pt 60.95 60.18 64.63 64.54 59.89 66.80
enet_b0_8_best_vgaf.pt 61.32 61.03 64.57 64.89 55.14 68.29
enet_b0_7.pt - - 65.74 65.74 56.99 65.18
enet_b2_8.pt 63.025 62.40 66.29 - 57.78 70.23
enet_b2_7.pt - - 65.91 66.34 59.63 69.84

Please note, that we report the accuracies for AFEW and VGAFonly on the subsets, in which MTCNN detects facial regions. The code contains also computation of overall accuracy on the complete testing set, which is slightly lower due to the absence of faces or failed face detection.

In order to run our code on the datasets, please prepare them firstly using our TensorFlow notebooks: train_emotions.ipynb, AFEW_train.ipynb and VGAF_train.ipynb.

If you want to run our mobile application, please, run the following scripts inside mobile_app folder:

python to_tflite.py
python to_pytorchlite.py

Please be sure that EfficientNet models for PyTorch are based on old timm 0.4.5 package, so that exactly tis version should be installed by the following command:

pip install timm==0.4.5
Comments
  • can you share your Manually_Annotated_file cvs files?

    can you share your Manually_Annotated_file cvs files?

    I test affectnet validation data, but get 0.5965 using enet_b2_8.pt. can you share Manually_Annotated_file validation.csv and training.csv to me for debug?

    opened by Dian-Yi 10
  • affectnet march2021 version training script update

    affectnet march2021 version training script update

    As mentioned in #14 , we have different version of affectnet versions. I updated pytorch training script for AffectNet march2021. Two notes are

    • I used horizontal flip for training augmentation,
    • and we have different emotion order in logit.
    opened by sunggukcha 6
  • Confidence range for inference using python library

    Confidence range for inference using python library

    Hi,

    First of all, thank you so much for such a convenient setup to use!

    I'm using the python library face emotion in my code with the model_name = 'enet_b0_8_best_afew'. I was wondering what is the range of the confidence returned by the library or this model in particular. I wasn't able to figure that out.

    Thank you

    opened by varunsingh3000 4
  • Preprocessing of images to run inference

    Preprocessing of images to run inference

    Hello, thank you very much for your work.

    I am trying to preprocess a batch of images (I have my own dataset) the way you prepared your data. I'm following the notebook train_emotions.ipynb as it is in Tensforflow and I'm using that framework.

    I have a question about the steps of the preprocessing, so I would like to ask you if you can tell me the correct steps. These are the steps I'm following, let me know if I'm right or if something is missing:

    1. I already have my images with the faces detected and croppped, i.e, I have a dataset full of faces like this frame9

    2. img = cv2.imread(img_path)

    3. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    4. img = cv2.resize(img,(224,224))

    5. Then your notebook shows you make a normalization def mobilenet_preprocess_input(x,**kwargs): x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x preprocessing_function=mobilenet_preprocess_input

    Here I am having an issue because I cannot cast the subtraction operation between an integer and a float, so I changed it to

    def mobilenet_preprocess_input(x,**kwargs): x[..., 0] = x[..., 0] - 103.939 x[..., 1] = x[..., 1] - 116.779 x[..., 2] = x[..., 2] - 123.68 return x preprocessing_function=mobilenet_preprocess_input

    So, let me know if the process I'm following is correct or if there's something missing.

    Thank you!

    opened by isa-tr 4
  • AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    Excuse me, this problem occurs when using the ‘enet_b2_7.pt’ model to test. I completed it according to the steps you gave, but I really couldn't find the reason for this problem. Do you have any suggestions?

    opened by evercy 4
  • Age gender ethinicity model giving same output for different results

    Age gender ethinicity model giving same output for different results

    `class CNN(object):

    def __init__(self, model_filepath):
    
        self.model_filepath = model_filepath
        self.load_graph(model_filepath = self.model_filepath)
    
    def load_graph(self, model_filepath):
        print('Loading model...')
        self.graph = tf.Graph()
        self.sess = tf.compat.v1.InteractiveSession(graph = self.graph)
    
        with tf.compat.v1.gfile.GFile(model_filepath, 'rb') as f:
            graph_def = tf.compat.v1.GraphDef()
            graph_def.ParseFromString(f.read())
    
        print('Check out the input placeholders:')
        nodes = [n.name + ' => ' +  n.op for n in graph_def.node if n.op in ('Placeholder')]
        for node in nodes:
            print(node)
    
        # Define input tensor
        self.input = tf.compat.v1.placeholder(np.float32, shape = [None, 224, 224, 3], name='input')
        # self.dropout_rate = tf.placeholder(tf.float32, shape = [], name = 'dropout_rate')
    
        tf.import_graph_def(graph_def, {'input_1': self.input})
    
        print('Model loading complete!')
    
        
        # Get layer names
        layers = [op.name for op in self.graph.get_operations()]
        for layer in layers:
            print(layer)
    
    def test(self, data):
    
        # Know your output node name
        output_tensor1,output_tensor2 ,output_tensor3  = self.graph.get_tensor_by_name('import/age_pred/Softmax: 0'),self.graph.get_tensor_by_name('import/gender_pred/Sigmoid: 0'),self.graph.get_tensor_by_name('import/ethnicity_pred/Softmax: 0')
        output = self.sess.run([output_tensor1,output_tensor2 ,output_tensor3], feed_dict = {self.input: data})
    
        return output`
    

    Using this code load "age_gender_ethnicity_224_deep-03-0.13-0.97-0.88.pb" and predict on it. But when predicting on images, every time I am getting same output array.

    [array([[0.01319346, 0.00229602, 0.00176407, 0.00270929, 0.01408699, 0.00574261, 0.00756087, 0.01012164, 0.01221055, 0.01821703, 0.01120028, 0.00936489, 0.01003029, 0.00912451, 0.00813381, 0.00894791, 0.01277262, 0.01034999, 0.01053109, 0.0133063 , 0.01423471, 0.01610439, 0.01528896, 0.01825454, 0.01722076, 0.01933933, 0.01908059, 0.01899827, 0.01919533, 0.0278129 , 0.02204996, 0.02146631, 0.02125309, 0.02146868, 0.02230236, 0.02054285, 0.02096066, 0.01976574, 0.01990371, 0.02064857, 0.01843528, 0.01697922, 0.01610838, 0.01458549, 0.01581902, 0.01377539, 0.01298613, 0.01378927, 0.01191105, 0.01335083, 0.01154454, 0.01118198, 0.01019558, 0.01038121, 0.00920709, 0.00902615, 0.00936321, 0.00969135, 0.00867239, 0.00838663, 0.00797724, 0.00756043, 0.00890809, 0.00758041, 0.00743711, 0.00584346, 0.00555749, 0.00639214, 0.0061864 , 0.00784793, 0.00532241, 0.00567684, 0.00481544, 0.0052173 , 0.00513186, 0.00394571, 0.00415856, 0.00384584, 0.00452774, 0.0041736 , 0.00328163, 0.00327138, 0.00297012, 0.00369216, 0.00284221, 0.00255897, 0.00285459, 0.00232105, 0.00228869, 0.00218005, 0.0021927 , 0.00236659, 0.00233843, 0.00204793, 0.00209861, 0.00231407, 0.00145706, 0.00179674, 0.00186183, 0.00221309]], dtype=float32), array([[0.62949586]], dtype=float32), array([[0.21338916, 0.19771543, 0.19809113, 0.19525865, 0.19554558]], dtype=float32)] Is there something am missing or is this .pb file not meant for predicting?

    opened by sneakatyou 4
  • Provide the validation script/notebook.

    Provide the validation script/notebook.

    Hi,

    I am fond of your works and paper, but I can not find any validation script to validate your result, especially the highest result with efficientNetB2-8 classes-EffectNet.

    Or could you please provide a separate script to pre-process the input images then we can validate the provided weights on your GitHub repository?

    Thank you,

    opened by ltkhang 4
  • A few suggestions.

    A few suggestions.

    Hello!

    I have a couple of ideas:

    1. Could you, please, add text description about difference between models, especially between b0 and b2 general types?
    2. Please consider adding hsemotion-onnx package to the pip repository.
    opened by ioctl-user 3
  • Can not load pretrained models

    Can not load pretrained models

     File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/timm/models/efficientnet_blocks.py", line 47, in forward
        return x * self.gate(x_se)
      File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/torch/nn/modules/module.py", line 947, in __getattr__
        raise AttributeError("'{}' object has no attribute '{}'".format(
    AttributeError: 'SqueezeExcite' object has no attribute 'gate'
    
    opened by DefTruth 3
  • A error when runing codes.

    A error when runing codes.

    When runing AFEW_train.ipynb, an error occured:

    could not broadcast input array from shape (0,112,3) into shape (60,112,3) at facial_anylysis.py line 274 : tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]

    why dose this occured? could you please fixed it?

    opened by kiva12138 3
  • Valence and arousal

    Valence and arousal

    Hello again! I've read your paper and I've seen that you use the circumplex model's variables arousal and valence. How do those variable appears in the code? I can't find them :( Thank you, Amaia

    opened by AmaiaBiomedicalEngineer 2
  • Question about this work.

    Question about this work.

    Dear Andrey Savchenko,

    I'm a student and going to build a small system to detect student's emotions for my thesis. After finding a solution, I found your job. But I can't run https://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_emotions.ipynb by current AFFECT dataset's version. Please correct me if I'm wrong. My question is: Can I run this workhttps://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_affectnet_march2021_pytorch.ipynb with MobileNet. Because I tend to build small applications to detect emotions from client site then send result to server.

    Many thanks,

    Son Nguyen.

    opened by sonnguyen1996 2
Releases(v0.2.1)
Owner
Andrey Savchenko
Andrey Savchenko
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022