Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Overview

Training Script for Reuse-VOS

This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Hard case (Ours, FRTM)

sample ours hard (Ours)

sample FRTM hard (FRTM)

Easy case (Ours, FRTM)

sample ours easy(Ours)

sample FRTM easy(FRTM)

Requirement

python package

  • torch
  • python-opencv
  • skimage
  • easydict

GPU support

  • GPU Memory >= 11GB (RN18)
  • CUDA >= 10.0
  • pytorch >= 1.4.0

Datasets

DAVIS

To test the DAVIS validation split, download and unzip the 2017 480p trainval images and annotations here.

/path/DAVIS
|-- Annotations/
|-- ImageSets/
|-- JPEGImages/

YouTubeVOS

To test our validation split and the YouTubeVOS challenge 'valid' split, download YouTubeVOS 2018 and place it in this directory structure:

/path/ytvos2018
|-- train/
|-- train_all_frames/
|-- valid/
`-- valid_all_frames/

Release

DAVIS

model Backbone Training set J & F 17 J & F 16 link
G-FRTM (t=1) Resnet18 Youtube-VOS + DAVIS 71.7 80.9 Google Drive
G-FRTM (t=0.7) Resnet18 Youtube-VOS + DAVIS 69.9 80.5 same pth
G-FRTM (t=1) Resnet101 Youtube-VOS + DAVIS 76.4 84.3 Google Drive
G-FRTM (t=0.7) Resnet101 Youtube-VOS + DAVIS 74.3 82.3 same pth

Youtube-VOS

model Backbone Training set G J-S J-Us F-S F-Us link
G-FRTM (t=1) Resnet18 Youtube-VOS 63.8 68.3 55.2 70.6 61.0 Google Drive
G-FRTM (t=0.8) Resnet18 Youtube-VOS 63.4 67.6 55.8 69.3 60.9 same pth
G-FRTM (t=0.7) Resnet18 Youtube-VOS 62.7 67.1 55.2 68.2 60.1 same pth

We initialize orignal-FRTM layers from official FRTM repository weight for Youtube-VOS benchmark. S = Seen, Us = Unseen

Target model cache

Here is the cache file we used for ResNet18 file

Run

Train

Open train.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python train.py --name <session-name> --ftext resnet18 --dset all --dev cuda:0

--name is the name of save_dir name of current train --ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2017, ytvos2018 or all ("all" really means "both"). --dev is the name of the device to train on. --m1 is the margin1 for training reuse gate, and we use 1.0 for DAVIS benchmark and 0.5 for Youtube-VOS benchmark. --m2 is the margin2 for training reuse gate, and we use 0.

Replace "session-name" with whatever you like. Subdirectories with this name will be created under your checkpoint and tensorboard paths.

Eval

Open eval.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python evaluate.py --ftext resnet18 --dset dv2017val --dev cuda:0

--ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2016val, dv2017val, yt2018jjval, yt2018val or yt2018valAll --dev is the name of the device to eval on. --TH Threshold for tau default= 0.7

The inference results will be saved at ${ROOT}/${result} . It is better to check multiple pth file for good accuracy.

Acknowledgement

This codebase borrows the code and structure from official FRTM repository. We are grateful to Facebook Inc. with valuable discussions.

Reference

The codebase is built based on following works

@misc{park2020learning,
      title={Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation}, 
      author={Hyojin Park and Jayeon Yoo and Seohyeong Jeong and Ganesh Venkatesh and Nojun Kwak},
      year={2020},
      eprint={2012.11655},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
HYOJINPARK
HYOJINPARK
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023