PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Overview

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot

Description

This is an inference sample written in PyTorch of the original Theano/Lasagne code.

I recreated the network as described in the paper of Karras et al. Since some layers seemed to be missing in PyTorch, these were implemented as well. The network and the layers can be found in model.py.

For the demo, a 100-celeb-hq-1024x1024-ours snapshot was used, which was made publicly available by the authors. Since I couldn't find any model converter between Theano/Lasagne and PyTorch, I used a quick and dirty script to transfer the weights between the models (transfer_weights.py).

This repo does not provide the code for training the networks.

Simple inference

To run the demo, simply execute predict.py. You can specify other weights with the --weights flag.

Example image:

Example image

Latent space interpolation

To try the latent space interpolation, use latent_interp.py. All output images will be saved in ./interp.

You can chose between the "gaussian interpolation" introduced in the original paper and the "slerp interpolation" introduced by Tom White in his paper Sampling Generative Networks using the --type argument.

Use --filter to change the gaussian filter size for the gaussian interpolation and --interp for the interpolation steps for the slerp interpolation.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --output - Directory for storing interpolated images
  • --batch_size - batch size for DataLoader
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

The total number of generated frames depends on the used interpolation technique.

For gaussian interpolation the number of generated frames equals nb_latents, while the slerp interpolation generates nb_latents * interp frames.

Example interpolation:

Example interpolation

Live latent space interpolation

A live demo of the latent space interpolation using PyGame can be seen in pygame_interp_demo.py.

Use the --size argument to change the output window size.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --size - PyGame window size
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

Transferring weights

The pretrained lasagne weights can be transferred to a PyTorch state dict using transfer_weights.py.

To transfer other snapshots from the paper (other than CelebA), you have to modify the model architecture accordingly and use the corresponding weights.

Environment

The code was tested on Ubuntu 16.04 with an NVIDIA GTX 1080 using PyTorch v.0.2.0_4.

  • transfer_weights.py needs Theano and Lasagne to load the pretrained weights.
  • pygame_interp_demo.py needs PyGame to visualize the output

A single forward pass took approx. 0.031 seconds.

Links

License

This code is a modified form of the original code under the CC BY-NC license with the following copyright notice:

# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

According the Section 3, I hereby identify Tero Karras et al. and NVIDIA as the original authors of the material.

Owner
Deep Learning Frameworks @NVIDIA
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022