AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AsymmetricGAN for Image-to-Image Translation

AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation

UN_Framework

AsymmetricGAN Framework for Hand Gesture-to-Gesture Translation

SU_Framework

Conference paper | Extended paper | Project page | Slides | Poster

Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
Hao Tang1, Dan Xu2, Wei Wang3, Yan Yan4 and Nicu Sebe1.
1University of Trento, Italy, 2University of Oxford, UK, 3EPFL, Switzerland, 4Texas State University, USA.
In ACCV 2018 (Oral).
The repository offers the official implementation of our paper in PyTorch.

License

Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AsymmetricGAN
cd AsymmetricGAN/

This code requires PyTorch 0.4.1 and python 3.6+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need two NVIDIA GeForce GTX 1080 Ti GPUs or two NVIDIA TITAN Xp GPUs.

Dataset Preparation

For hand gesture-to-gesture translation task, we use NTU Hand Digit and Creative Senz3D datasets. Both datasets must be downloaded beforehand. Please download them on the respective webpages. In addition, follow GestureGAN to prepare both datasets. Please cite their papers if you use the data.

Preparing NTU Hand Digit Dataset. The dataset can be downloaded in this paper. After downloading it we adopt OpenPose to generate hand skeletons and use them as training and testing data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Creative Senz3D Dataset. The dataset can be downloaded here. After downloading it we adopt OpenPose to generate hand skeletons and use them as training data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Your Own Datasets. Each training sample in the dataset will contain {Ix,Iy,Cx,Cy}, where Ix=image x, Iy=image y, Cx=Controllable structure of image x, and Cy=Controllable structure of image y. Of course, you can use AsymmetricGAN for your own datasets and tasks.

Generating Images Using Pretrained Model

Once the dataset is ready. The result images can be generated using pretrained models.

  1. You can download a pretrained model (e.g. ntu_asymmetricgan) with the following script:
bash ./scripts/download_asymmetricgan_model.sh ntu_asymmetricgan

The pretrained model is saved at ./checkpoints/[type]_pretrained. Check here for all the available AsymmetricGAN models.

  1. Generate images using the pretrained model.

For NTU Dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D Dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

If you are running on CPU mode, change --gpu_ids 0 to --gpu_ids -1. Note that testing requires a lot of time and large amount of disk storage space. If you don't have enough space, append --saveDisk on the command line.

  1. The outputs images are stored at ./results/[type]_pretrained/ by default. You can view them using the autogenerated HTML file in the directory.

Training New Models

New models can be trained with the following commands.

  1. Prepare dataset.

  2. Train.

For NTU dataset:

export CUDA_VISIBLE_DEVICES=3,4;
python train.py --dataroot ./datasets/ntu \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

For Senz3D dataset:

export CUDA_VISIBLE_DEVICES=5,7;
python train.py --dataroot ./datasets/senz3d \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use export CUDA_VISIBLE_DEVICES=[GPU_ID].

To view training results and loss plots on local computers, set --display_id to a non-zero value and run python -m visdom.server on a new terminal and click the URL http://localhost:8097. On a remote server, replace localhost with your server's name, such as http://server.trento.cs.edu:8097.

Can I continue/resume my training?

To fine-tune a pre-trained model, or resume the previous training, use the --continue_train --which_epoch --epoch_count flag. The program will then load the model based on epoch you set in --which_epoch . Set --epoch_count to specify a different starting epoch count.

Testing

Testing is similar to testing pretrained models.

For NTU dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

Use --how_many to specify the maximum number of images to generate. By default, it loads the latest checkpoint. It can be changed using --which_epoch.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • models/asymmetricgan_model.py: creates the networks, and compute the losses.
  • models/networks/: defines the architecture of all models for GestureGAN.
  • options/: creates option lists using argparse package.
  • data/: defines the class for loading images and controllable structures.

Evaluation Code

We use several metrics to evaluate the quality of the generated images:

To Do List

  • Upload supervised AsymmetricGAN code for hand gesture-to-gesture translation
  • Upload unsupervised AsymmetricGAN code for multi-domain image-to-image translation: code

Citation

If you use this code for your research, please cite our papers.

@article{tang2019asymmetric,
  title={Asymmetric Generative Adversarial Networks for Image-to-Image Translation},
  author={Hao Tang and Dan Xu and Hong Liu and Nicu Sebe},
  journal={arXiv preprint arXiv:1912.06931},
  year={2019}
}

@inproceedings{tang2018dual,
  title={Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Wang, Wei and Yan, Yan and Sebe, Nicu},
  booktitle={ACCV},
  year={2018}
}

Acknowledgments

This source code is inspired by Pix2pix and GestureGAN.

Related Projects

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022