AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AttentionGAN-v2 for Unpaired Image-to-Image Translation

AttentionGAN-v2 Framework

The proposed generator learns both foreground and background attentions. It uses the foreground attention to select from the generated output for the foreground regions, while uses the background attention to maintain the background information from the input image. Please refer to our papers for more details.

Framework

Comparsion with State-of-the-Art Methods

Selfie To Anime Translation

Result

Horse to Zebra Translation

Result
Result

Zebra to Horse Translation

Result

Apple to Orange Translation

Result

Orange to Apple Translation

Result

Map to Aerial Photo Translation

Result

Aerial Photo to Map Translation

Result

Style Transfer

Result

Visualization of Learned Attention Masks

Selfie to Anime Translation

Result

Horse to Zebra Translation

Attention

Zebra to Horse Translation

Attention

Apple to Orange Translation

Attention

Orange to Apple Translation

Attention

Map to Aerial Photo Translation

Attention

Aerial Photo to Map Translation

Attention

Extended Paper | Conference Paper

AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks.
Hao Tang1, Hong Liu2, Dan Xu3, Philip H.S. Torr3 and Nicu Sebe1.
1University of Trento, Italy, 2Peking University, China, 3University of Oxford, UK.
In TNNLS 2021 & IJCNN 2019 Oral.
The repository offers the official implementation of our paper in PyTorch.

Are you looking for AttentionGAN-v1 for Unpaired Image-to-Image Translation?

Paper | Code

Are you looking for AttentionGAN-v1 for Multi-Domain Image-to-Image Translation?

Paper | Code

Facial Expression-to-Expression Translation

Result Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Facial Attribute Transfer

Attention Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Result Order: The Learned Attention Masks, AttentionGAN, StarGAN

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AttentionGAN
cd AttentionGAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA Tesla V100 with 16G memory.

Dataset Preparation

Download the datasets using the following script. Please cite their paper if you use the data. Try twice if it fails the first time!

sh ./datasets/download_cyclegan_dataset.sh dataset_name

The selfie2anime dataset can be download here.

AttentionGAN Training/Testing

  • Download a dataset using the previous script (e.g., horse2zebra).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./scripts/train_attentiongan.sh
  • To see more intermediate results, check out ./checkpoints/horse2zebra_attentiongan/web/index.html.
  • How to continue train? Append --continue_train --epoch_count xxx on the command line.
  • Test the model:
sh ./scripts/test_attentiongan.sh
  • The test results will be saved to a html file here: ./results/horse2zebra_attentiongan/latest_test/index.html.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., horse2zebra) with the following script:
sh ./scripts/download_attentiongan_model.sh horse2zebra
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest --saveDisk

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory. Note that if you want to save the intermediate results and have enough disk space, remove --saveDisk on the command line.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Image Translation with Geometric Changes Between Source and Target Domains

For instance, if you want to run experiments of Selfie to Anime Translation. Usage: replace attention_gan_model.py and networks with the ones in the AttentionGAN-geo folder.

Test the Pretrained Model

Download data and pretrained model according above instructions.

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Train a New Model

python train.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --pool_size 50 --no_dropout --norm instance --lambda_A 10 --lambda_B 10 --lambda_identity 0.5 --load_size 286 --crop_size 256 --batch_size 4 --niter 100 --niter_decay 100 --gpu_ids 0 --display_id 0 --display_freq 100 --print_freq 100

Test the Trained Model

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Evaluation Code

  • FID: Official Implementation
  • KID or Here: Suggested by UGATIT. Install Steps: conda create -n python36 pyhton=3.6 anaconda and pip install --ignore-installed --upgrade tensorflow==1.13.1. If you encounter the issue AttributeError: module 'scipy.misc' has no attribute 'imread', please do pip install scipy==1.1.0.

Citation

If you use this code for your research, please cite our papers.

@article{tang2021attentiongan,
  title={AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks},
  author={Tang, Hao and Liu, Hong and Xu, Dan and Torr, Philip HS and Sebe, Nicu},
  journal={IEEE Transactions on Neural Networks and Learning Systems (TNNLS)},
  year={2021} 
}

@inproceedings{tang2019attention,
  title={Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Yan, Yan},
  booktitle={International Joint Conference on Neural Networks (IJCNN)},
  year={2019}
}

Acknowledgments

This source code is inspired by CycleGAN, GestureGAN, and SelectionGAN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Figure out what you like. Try to become the best in the world of it.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022