TeST: Temporal-Stable Thresholding for Semi-supervised Learning

Related tags

Deep LearningTeST
Overview

TeST: Temporal-Stable Thresholding for Semi-supervised Learning


TeST Illustration

Semi-supervised learning (SSL) offers an effective method for large-scale data scenes that can utilize large amounts of unlabeled samples. The mainstream SSL approaches use only the criterion of fixed confidence threshold to assess whether the prediction of a sample is of sufficiently high quality to serve as a pseudo-label. However, this simple quality assessment ignores how well the model learns a sample and the uncertainty possessed by that sample itself, failing to fully exploit a large number of correct samples below the confidence threshold. We propose a novel pseudo-label quality assessment method, TeST (Temporal-Stable Thresholding), to design the adaptive thresholds for each instance to recall high-quality samples that are more likely to be correct but discarded by a fixed threshold. We first record the predictions of all instances over a continuous time series. Then we calculate the mean and standard deviation of these predictions to reflect the learning status and temporal uncertainty of the samples, respectively, and use to select pseudo-labels dynamically. In addition, we introduce more diverse samples for TeST to be supervised by high-quality pseudo-labels, thus reducing the uncertainty of overall samples. Our method achieves state-of-the-art performance in various SSL benchmarks, including $5.33%$ and $4.52%$ accuracy improvements on CIFAR-10 with 40 labels and Mini-ImageNet with 4000 labels, respectively. The ablation study further demonstrates that TeST is capable of extending the high-quality pseudo-labels with more temporal-stable and correct pseudo-labels.

Requirements

All experiments are done with python 3.7, torch==1.7.1; torchvision==0.8.2

Prepare environment

  1. Create conda virtual environment and activate it.
conda create -n tst python=3.7 -y
conda activate tst
  1. Install PyTorch and torchvision following the official instructions.
conda install pytorch==1.7.1 torchvision==0.8.2 -c pytorch

Prepare environment

git clone https://github.com/Harry887/TeST.git
cd tst
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"

Training

FixMatch for CIFAR10 with 250 labels

python tst/tools/train_semi.py -d 0-3 -b 64 -f tst/exps/fixmatch/fixmatch_cifar10_exp.py --exp-options out=outputs/exp/cifar10/250/[email protected]_4x16

TeST for Mini-ImageNet with 4000 labels

python tst/tools/train_semi_tst_dual.py -d 0-3 -b 64 -f tst/exps/tst/tst_miniimagenet_dual_exp.py --exp-options out=outputs/exp/miniimagenet/4000/[email protected]_4x16

Development

pre-commit code check

pip install -r requirements-dev.txt
pre-commit install
Owner
Xiong Weiyu
Xiong Weiyu
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023