Hyperbolic Hierarchical Clustering.

Related tags

Deep LearningHypHC
Overview

Hyperbolic Hierarchical Clustering (HypHC)

This code is the official PyTorch implementation of the NeurIPS 2020 paper:

From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering
Ines Chami, Albert Gu, Vaggos Chatziafratis and Christopher Ré
Stanford University
Paper: https://arxiv.org/abs/2010.00402

Abstract. Similarity-based Hierarchical Clustering (HC) is a classical unsupervised machine learning algorithm that has traditionally been solved with heuristic algorithms like Average-Linkage. Recently, Dasgupta reframed HC as a discrete optimization problem by introducing a global cost function measuring the quality of a given tree. In this work, we provide the first continuous relaxation of Dasgupta's discrete optimization problem with provable quality guarantees. The key idea of our method, HypHC, is showing a direct correspondence from discrete trees to continuous representations (via the hyperbolic embeddings of their leaf nodes) and back (via a decoding algorithm that maps leaf embeddings to a dendrogram), allowing us to search the space of discrete binary trees with continuous optimization. Building on analogies between trees and hyperbolic space, we derive a continuous analogue for the notion of lowest common ancestor, which leads to a continuous relaxation of Dasgupta's discrete objective. We can show that after decoding, the global minimizer of our continuous relaxation yields a discrete tree with a (1+epsilon)-factor approximation for Dasgupta's optimal tree, where epsilon can be made arbitrarily small and controls optimization challenges. We experimentally evaluate HypHC on a variety of HC benchmarks and find that even approximate solutions found with gradient descent have superior clustering quality than agglomerative heuristics or other gradient based algorithms. Finally, we highlight the flexibility of HypHC using end-to-end training in a downstream classification task.

Installation

This code has been tested with python3.7. First, create a virtual environment (or conda environment) and install the dependencies:

python3 -m venv hyphc_env

source hyphc_env/bin/activate

pip install -r requirements.txt

Then install the mst and unionfind packages which are used to decode embeddings into trees and compute the discrete Dasgupta Cost efficiently:

cd mst; python setup.py build_ext --inplace

cd unionfind; python setup.py build_ext --inplace

Datasets

source download_data.sh

This will download the zoo, iris and glass datasets from the UCI machine learning repository. Please refer to the paper for the download links of the other datasets used in the paper.

Code Usage

Train script

To use the code, first set environment variables in each shell session:

source set_env.sh

To train the HypHC mode, use the train script:

python train.py
    optional arguments:
      -h, --help            show this help message and exit
      --seed SEED
      --epochs EPOCHS
      --batch_size BATCH_SIZE
      --learning_rate LEARNING_RATE
      --eval_every EVAL_EVERY
      --patience PATIENCE
      --optimizer OPTIMIZER
      --save SAVE
      --fast_decoding FAST_DECODING
      --num_samples NUM_SAMPLES
      --dtype DTYPE
      --rank RANK
      --temperature TEMPERATURE
      --init_size INIT_SIZE
      --anneal_every ANNEAL_EVERY
      --anneal_factor ANNEAL_FACTOR
      --max_scale MAX_SCALE
      --dataset DATASET

Examples

We provide examples of training commands for the zoo, iris and glass datasets. For instance, to train HypHC on zoo, run:

source examples/run_zoo.sh

This will create an embedding directory and save training logs, embeddings and the configuration parameters in a embedding/zoo/[unique_id] where the unique id is based on the configuration parameters used to train the model.

Citation

If you find this code useful, please cite the following paper:

@inproceedings{NEURIPS2020_ac10ec1a,
 author = {Chami, Ines and Gu, Albert and Chatziafratis, Vaggos and R\'{e}, Christopher},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {15065--15076},
 publisher = {Curran Associates, Inc.},
 title = {From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering},
 url = {https://proceedings.neurips.cc/paper/2020/file/ac10ec1ace51b2d973cd87973a98d3ab-Paper.pdf},
 volume = {33},
 year = {2020}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021