Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

Related tags

Deep LearningContIG
Overview

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics

This is the code implementation of the paper "ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics".

If you find this repository useful, please consider citing our paper in your work:

@misc{contig2021,
      title={ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics}, 
      author={Aiham Taleb and Matthias Kirchler and Remo Monti and Christoph Lippert},
      year={2021},
      eprint={2111.13424},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

To run the experiments, you will have to have access to UK Biobank data (requires application) and will need to set up the data modalities properly.

We handle the paths to different external files with the paths.toml. Model checkpoints are stored in CHECKPOINTS_BASE_PATH (='checkpoints' by default). For some parts, we use plink and plink2 software, which you can download from here and here. Unzip and set the corresponding paths in the paths.toml file.

Python

Install the dependencies via

conda env create --file environment.yml

Setting up image data

See image_preprocessing for the code. We first use resize.py to find the retinal fundus circle, crop to that part of the image, and then filter out the darkest and brightest images with filtering_images.py.

After preprocessing the images, make sure to set BASE_IMG in paths.toml to the directory that contains the directories {left|right}/512_{left|right}/processed/.

Ancestry prediction

We only included individuals that were genetically most likely to be of european ancestry. We used the genotype-based prediction pipeline GenoPred; see documentation on the site, and put the path to the output (a .model_pred file in tsv format) into the ANCESTRY variable in paths.toml.

This ancestry prediction can also be replaced by the UKB variable 22006. In this case, create a tsv file with two columns, IID and EUR; set EUR = 1 for caucasians and EUR = 0 for others, and point the ANCESTRY variable in paths.toml to this file. Explicit ancestry prediction and the caucasian variable are mostly identical, but our ancestry prediction is a little more lenient and includes a few more individuals.

Setting up genetic data

We use three different genetic modalities in the paper.

Setting up Raw SNPs

Raw SNPs work mostly without preprocessing and use the basic microarray data from UKB. Make sure to set the BASE_GEN path in paths.toml to the directory that contains all the bed/bim/fam files from the UKB.

Setting up Polygenic Scores

PGS requires the imputed data. See the pgs directory for a reference to set everything up. Make sure to update the BASE_PGS to point to the output directory from that. We also include a list of scores used in the main paper.

Setting up Burden Scores

Burden scores are computed using the whole exome sequencing release from the UKB. We used faatpipe to preprocess this data; see there for details. Update the BASE_BURDEN variable in paths.toml to include the results (should point to a directory with combined_burdens_colnames.txt, combined_burdens_iid.txt and combined_burdens.h5).

Setting up phenotypic UKB data

Point the UKB_PHENO_FILE variable in paths.toml to the full phenotype csv file from the UKB data release and run export_card() from data.data_ukb.py to preprocess the data (only needs to be run once; there may be a bug with pandas >= 1.3 on some systems, so consider using pandas = 1.2.5 for this step).

You can ignore the BLOOD_BIOMARKERS variable, since it's not used in any of the experiments.

Setting up downstream tasks

Download and unzip the downstream tasks from PALM, RFMiD and APTOS and point the {PALM|RFMID|APTOS}_PATH variables in paths.toml correspondingly.

UKB downstream tasks are set up with the main UKB set above.

Training self-supervised models

ContIG

In order to train models with our method ContIG, use the script train_contig.py. In this script, it is possible to set many of the constants used in training, such as IMG_SIZE, BATCH_SIZE, LR, CM_EMBEDDING_SIZE, GENETICS_MODALITY and many others. We provide default values at the beginning of this script, which we use in our reported values. Please make sure to set the paths to datasets in paths.toml beforehand.

Baseline models

In order to train the baseline models, each script is named after the algorithm: SimCLR simclr.py, NNCLR nnclr.py, Simsiam simsiam.py, Barlow Twins barlow_twins.py, and BYOL byol.py

Each of these scripts allow for setting all the relevant hyper-parameters for training these baselines, such as max_epochs, PROJECTION_DIM, TEMPERATURE, and others. Please make sure to set the paths to datasets in paths.toml beforehand.

Evaluating Models

To fine-tune (=train) the models on downstream tasks, the following scripts are the starting points:

  • For APTOS Retinopathy detection: use aptos_diabetic_retinopathy.py
  • For RFMiD Multi-Disease classification: use rfmid_retinal_disease_classification.py
  • For PALM Myopia Segmentation: use palm_myopia_segmentation.py
  • For UK Biobank Cardiovascular discrete risk factors classification: use ukb_covariate_classification.py
  • For UK Biobank Cardiovascular continuous risk factors prediction (regression): use ukb_covariate_prediction.py

Each of the above scripts defines its hyper-parameters at the beginning of the respective files. A common variable however is CHECKPOINT_PATH, whose default value is None. If set to None, this means to train the model from scratch without loading any pretrained checkpoint. Otherwise, it loads the encoder weights from pretrained models.

Running explanations

Global explanations

Global explanations are implemented in feature_explanations.py. See the final_plots function for an example to create explanations with specific models.

Local explanations

Local explanations are implemented in local_explanations.py. Individuals for which to create explanations can be set with the INDIVIDUALS variable. See the final_plots function for an example to create explanations with specific models.

Running the GWAS

The GWAS is implemented in downstream_gwas.py. You can specify models for which to run the GWAS in the WEIGHT_PATHS dict and then run the run_all_gwas function to iterate over this dict.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023