Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Overview

Explainability Requires Interactivity

This repository contains the code to train all custom models used in the paper Explainability Requires Interactivity as well as to create all static explanations (heat maps and generative). For our interactive framework, see the sister repositor.

Precomputed generative explanations are located at static_generative_explanations.

Requirements

Install the conda environment via conda env create -f env.yml (depending on your system you might need to change some versions, e.g. for pytorch, cudatoolkit and pytorch-lightning).

For some parts you will need the FairFace model, which can be downloaded from the authors' repo. You will only need the res34_fair_align_multi_7_20190809.pt file.

Training classification networks

CelebA dataset

You first need to download and decompress the CelebAMask-HQ dataset (or here). Then run the training with

python train.py --dset celeb --dset_path /PATH/TO/CelebAMask-HQ/ --classes_or_attr Smiling --target_path /PATH/TO/OUTPUT

/PATH/TO/FLOWERS102/ should contain a CelebAMask-HQ-attribute-anno.txt file and an CelebA-HQ-img directory. Any of the columns in CelebAMask-HQ-attribute-anno.txt can be used; in the paper we used Heavy_Makeup, Male, Smiling, and Young.

Flowers102 dataset

You first need to download and decompress the Flowers102 data. Then run the training with

python train.py --dset flowers102 --dset_path /PATH/TO/FLOWERS102/ --classes_or_attr 49-65 --target_path /PATH/TO/OUTPUT/

/PATH/TO/FLOWERS102/ should contain an imagelabels.mat file and an images directory. Classes 49 and 65 correspond to the "Oxeye daisy" and "California poppy", while 63 and 54 correspond to "Black-eyed Susan" and "Sunflower" as in the paper.

Generating heatmap explanations

Heatmap explanations are generated using the Captum library. After training, run explanations via

python static_exp.py --model_path /PATH/TO/MODEL.pt --img_path /PATH/TO/IMGS/ --model_name celeb --fig_dir /PATH/TO/OUTPUT/

/PATH/TO/IMGS/ contains (only) image files and can be omitted in order to run the default images exported by train.py. To run on FairFace, choose --model_name fairface and add --attr age or --attr gender. Other explanation methods can be easily added by modifying the explain_all function in static_exp.py. Explanations are saved to fig_dir. Only tested for the networks trained on the facial images data in the previous step, but any resnet18 with scalar output layer should work just as well.

Generating generative explanations

First, clone the original NVIDIA StyleGAN2-ada-pytorch repo. Make sure everything works as expected (e.g. run the getting started code). If the code is stuck at loading TODO, usually ctrl-C will let the model fall back to a smaller reference implementation which is good enough for our use case. Next, export the repo into your PYTHONPATH (e.g. via export PYTHONPATH=$PYTHONPATH:/PATH/TO/stylegan2-ada-pytorch/). To generate explanations, you will need to 0) train an image model (see above, or use the FairFace model); 1) create a dataset of latent codes + labels; 2) train a latent space logistic regression models; and 3) create the explanations. As each of the steps can be very slow, we split them up

Create labeled latent dataset

First, make sure to either train at least one image model as in the first step and/or download the FairFace model.

python generative_exp.py --phase 1 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --generator_path /PATH/TO/STYLEGAN2.pkl --n_train 20000 --n_valid 5000

The base_dir is the directory where all files/sub-directories are stored and should be the same as the target_path from train.py (e.g., just .). It should contain e.g. the celeb-Smiling directory and the res34_fair_align_multi_7_20190809.pt file if using --attrs Smiling,ff-skin-color.

Train latent space model

After the first step, run

python generative_exp.py --phase 2 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --epochs 50

with same base_dir and attrs.

Create generative explanations

Finally, you can generate generative explanations via

python generative_exp.py --phase 3 --base_dir /PATH/TO/BASE/ --eval_attr Smiling --generator_path /PATH/TO/STYLEGAN2.pkl --attrs Smiling,ff-skin-color --reconstruction_steps 1000 --ampl 0.09 --input_img_dir /PATH/TO/IMAGES/ --output_dir /PATH/TO/OUTPUT/

Here, eval_attr is the final evaluation model's class that you want to explain; attrs are the same as before, the directions in latent space; input_img_dir is a directory with (only) image files that are to be explained. Explanations are saved to output_dir.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023