Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Overview

Attention Probe: Vision Transformer Distillation in the Wild

License: MIT

Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang
In ICASSP 2022

This code is the Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Overview

  • We propose the concept of Attention Probe, a special section of the attention map to utilize a large amount of unlabeled data in the wild to complete the vision transformer data-free distillation task. Instead of generating images from the teacher network with a series of priori, images most relevant to the given pre-trained network and tasks will be identified from a large unlabeled dataset (e.g., Flickr) to conduct the knowledge distillation task.
  • We propose a simple yet efficient distillation algorithm, called probe distillation, to distill the student model using intermediate features of the teacher model, which is based on the Attention Probe.

Prerequisite

We use Pytorch 1.7.1, and CUDA 11.0. You can install them with

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

It should also be applicable to other Pytorch and CUDA versions.

Usage

Data Preparation

First, you need to modify the storage format of the cifar-10/100 and tinyimagenet dataset to the style of ImageNet, etc. CIFAR 10 run:

python process_cifar10.py

CIFAR 100 run:

python process_cifar100.py

Tiny-ImageNet run:

python process_tinyimagenet.py
python process_move_file.py

The dataset dir should have the following structure:

dir/
  train/
    ...
  val/
    n01440764/
      ILSVRC2012_val_00000293.JPEG
      ...
    ...

Train a normal teacher network

For this step you need to train normal teacher transformer models for selecting valuable data from the wild. We train the teacher model based on the timm PyTorch library:

timm

Our pretrained teacher models (CIFAR-10, CIFAR-100, ImageNet, Tiny-ImageNet, MNIST) can be downloaded from here:

Pretrained teacher models

Select valuable data from the wild

Then, you can use the Attention Probe method to select valuable data in the wild dataset.

To select valuable data CIFAR-10 run:

bash training.sh
(CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar10 --data_cifar $root_cifar10 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar10 --selected_file $selected_cifar10 --output_dir $output_student_cifar10 --nb_classes 10 --lr_S 7.5e-4 --attnprobe_sel --attnprobe_dist )

CIFAR-100 run:

bash training.sh
(CIFAR 100 run: CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar10 --data_cifar $root_cifar10 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar10 --selected_file $selected_cifar10 --output_dir $output_student_cifar10 --nb_classes 10 --lr_S 7.5e-4 --attnprobe_sel --attnprobe_dist )

TinyImageNet run:

bash training_tinyimagenet.sh

ImageNet run:

bash training_imagenet.sh

After you will get "class_weights.pth, pred_out.pth, value_blk3.pth, value_blk7.pth, value_out.pth" in '/selected/cifar10/' or '/selected/cifar100/' directory, you have already obtained the selected data.

Probe Knowledge Distillation for Student networks

Then you can distill the student model using intermediate features of the teacher model based on the selected data.

bash training.sh
(CIFAR 10 run: CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar100 --data_cifar $root_cifar100 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar100 --selected_file $selected_cifar100 --output_dir $output_student_cifar100 --nb_classes 100 --lr_S 8.5e-4 --attnprobe_sel --attnprobe_dist)

(CIFAR 100 run: CUDA_VISIBLE_DEVICES=0,1,2,3 python DFND_DeiT-train.py --dataset cifar100 --data_cifar $root_cifar100 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar100 --selected_file $selected_cifar100 --output_dir $output_student_cifar100 --nb_classes 100 --lr_S 8.5e-4 --attnprobe_sel --attnprobe_dist)

TinyImageNet run:

bash training_tinyimagenet.sh

ImageNet run:

bash training_imagenet.sh

you will get the student transformer model in '/output/cifar10/student/' or '/output/cifar100/student/' directory.

Our distilled student models (CIFAR-10, CIFAR-100, ImageNet, Tiny-ImageNet, MNIST) can be downloaded from here: Distilled student models

Results

Citation

@inproceedings{
wang2022attention,
title={Attention Probe: Vision Transformer Distillation in the Wild},
author={Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang},
booktitle={International Conference on Acoustics, Speech and Signal Processing},
year={2022},
url={https://2022.ieeeicassp.org/}
}

Acknowledgement

Owner
IIGROUP
The Intelligent Interaction Group at Tsinghua University
IIGROUP
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023