Transformers and related deep network architectures are summarized and implemented here.

Overview

Transformers: from NLP to CV

cover

This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV)

  1. Introduction
  2. ViT: Transformers for Computer Vision
  3. Visualizing the attention Open In Colab
  4. MLP-Mixer Open In Colab
  5. Hybrid MLP-Mixer + ViT Open In Colab
  6. ConvMixer Open In Colab
  7. Hybrid ConvMixer + MLP-Mixer Open In Colab

1) Introduction

What is wrong with RNNs and CNNs

Learning Representations of Variable Length Data is a basic building block of sequence-to-sequence learning for Neural machine translation, summarization, etc

  • Recurrent Neural Networks (RNNs) are natural fit variable-length sentences and sequences of pixels. But sequential computation inhibits parallelization. No explicit modeling of long and short-range dependencies.
  • Convolutional Neural Networks (CNNs) are trivial to parallelize (per layer) and exploit local dependencies. However, long-distance dependencies require many layers.

Attention!

The Transformer archeticture was proposed in the paper Attention is All You Need. As mentioned in the paper:

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely"

"Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train"

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language). One basic and well known neural network architecture for NMT is called sequence-to-sequence seq2seq and it involves two RNNs.

  • Encoder: RNN network that encodes the input sequence to a single vector (sentence encoding)
  • Decoder: RNN network that generates the output sequences conditioned on the encoder's output. (conditioned language model)

seqseq

The problem of the vanilla seq2seq is information bottleneck, where the encoding of the source sentence needs to capture all information about it in one vector.

As mentioned in the paper Neural Machine Translation by Jointly Learning to Align and Translate

"A potential issue with this encoder–decoder approach is that a neural network needs to be able to compress all the necessary information of a source sentence into a fixed-length vector. This may make it difficult for the neural network to cope with long sentences, especially those that are longer than the sentences in the training corpus."

attention001.gif

Attention provides a solution to the bottleneck problem

  • Core idea: on each step of the decoder, use a direct connection to the encoder to focus on a particular part of the source sequence. Attention is basically a technique to compute a weighted sum of the values (in the encoder), dependent on another value (in the decoder).

The main idea of attention can be summarized as mention the OpenAi's article:

"... every output element is connected to every input element, and the weightings between them are dynamically calculated based upon the circumstances, a process called attention."

Query and Values

  • In the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)
  • The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
  • Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

2) Transformers for Computer Vision

Transfomer based architectures were used not only for NLP but also for computer vision tasks. One important example is Vision Transformer ViT that represents a direct application of Transformers to image classification, without any image-specific inductive biases. As mentioned in the paper:

"We show that reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks"

"Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks"

vit

As we see, an input image is splitted into patches which are treated the same way as tokens (words) in an NLP application. Position embeddings are added to the patch embeddings to retain positional information. Similar to BERT’s class token, a classification head is attached here and used during pre-training and fine-tuning. The model is trained on image classification in supervised fashion.

Multi-head attention

The intuition is similar to have a multi-filter in CNNs. Here we can have multi-head attention, to give the network more capacity and ability to learn different attention patterns. By having multiple different layers that generate (or project) the vectors of queries, keys and values, we can learn multiple representations of these queries, keys and values.

mha

Where each token is projected (in a learnable way) into three vecrors Q, K, and V:

  • Q: Query vector: What I want
  • K: Key vector: What type of info I have
  • V: Value vector: What actual info I have

3) Visualizing the attention

Open In Colab

The basic ViT architecture is used, however with only one transformer layer with one (or four) head(s) for simplicity. The model is trained on CIFAR-10 classification task. The image is splitted in to 12 x 12 = 144 patches as usual, and after training, we can see the 144 x 144 attention scores (where each patch can attend to the others).

imgpatches

Attention map represents the correlation (attention) between all the tokens, where the sum of each row equals 1 representing the probability distribution of attention from a query patch to all others.

attmap

Long distance attention we can see two interesting patterns where background patch attends to long distance other background patches, and this flight patch attends to long distance other flight patches.

attpattern

We can try more heads and more transfomer layers and inspect the attention patterns.

attanim


4) MLP-Mixer

Open In Colab

MLP-Mixer is proposed in the paper An all-MLP Architecture for Vision. As mentioned in the paper:

"While convolutions and attention are both sufficient for good performance, neither of them is necessary!"

"Mixer is a competitive but conceptually and technically simple alternative, that does not use convolutions or self-attention"

Mixer accepts a sequence of linearly projected image patches (tokens) shaped as a “patches × channels” table as an input, and maintains this dimensionality. Mixer makes use of two types of MLP layers:

mixer

  • Channel-mixing MLPs allow communication between different channels, they operate on each token independently and take individual rows of the table as inputs
  • Token-mixing MLPs allow communication between different spatial locations (tokens); they operate on each channel independently and take individual columns of the table as inputs.

These two types of layers are interleaved to enable interaction of both input dimensions.

"The computational complexity of the network is linear in the number of input patches, unlike ViT whose complexity is quadratic"

"Unlike ViTs, Mixer does not use position embeddings"

It is commonly observed that the first layers of CNNs tend to learn detectors that act on pixels in local regions of the image. In contrast, Mixer allows for global information exchange in the token-mixing MLPs.

"Recall that the token-mixing MLPs allow global communication between different spatial locations."

vizmixer

The figure shows hidden units of the four token-mixing MLPs of Mixer trained on CIFAR10 dataset.


5) Hybrid MLP-Mixer and ViT

Open In Colab

We can use both the MLP-Mixer and ViT in one network architecture to get the best of both worlds.

mixvit

Adding a few self-attention sublayers to mixer is expected to offer a simple way to trade off speed for accuracy.


6) CovMixer

Open In Colab

Patches Are All You Need?

Is the performance of ViTs due to the inherently more powerful Transformer architecture, or is it at least partly due to using patches as the input representation.

ConvMixer, an extremely simple model that is similar in many aspects to the ViT and the even-more-basic MLP-Mixer

Despite its simplicity, ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive fields and content-aware behavior, the inductive bias of convolution is well-suited to vision tasks and leads to high data efficiency.

ConvMixers are substantially slower at inference than the competitors!

conmixer01


7) Hybrid MLP-Mixer and CovMixer

Open In Colab

Once again, we can use both the MLP-Mixer and ConvMixer in one network architecture to get the best of both worlds. Here is a simple example.

convmlpmixer


References and more information

Owner
Ibrahim Sobh
Ibrahim Sobh
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022