Transformers and related deep network architectures are summarized and implemented here.

Overview

Transformers: from NLP to CV

cover

This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV)

  1. Introduction
  2. ViT: Transformers for Computer Vision
  3. Visualizing the attention Open In Colab
  4. MLP-Mixer Open In Colab
  5. Hybrid MLP-Mixer + ViT Open In Colab
  6. ConvMixer Open In Colab
  7. Hybrid ConvMixer + MLP-Mixer Open In Colab

1) Introduction

What is wrong with RNNs and CNNs

Learning Representations of Variable Length Data is a basic building block of sequence-to-sequence learning for Neural machine translation, summarization, etc

  • Recurrent Neural Networks (RNNs) are natural fit variable-length sentences and sequences of pixels. But sequential computation inhibits parallelization. No explicit modeling of long and short-range dependencies.
  • Convolutional Neural Networks (CNNs) are trivial to parallelize (per layer) and exploit local dependencies. However, long-distance dependencies require many layers.

Attention!

The Transformer archeticture was proposed in the paper Attention is All You Need. As mentioned in the paper:

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely"

"Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train"

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language). One basic and well known neural network architecture for NMT is called sequence-to-sequence seq2seq and it involves two RNNs.

  • Encoder: RNN network that encodes the input sequence to a single vector (sentence encoding)
  • Decoder: RNN network that generates the output sequences conditioned on the encoder's output. (conditioned language model)

seqseq

The problem of the vanilla seq2seq is information bottleneck, where the encoding of the source sentence needs to capture all information about it in one vector.

As mentioned in the paper Neural Machine Translation by Jointly Learning to Align and Translate

"A potential issue with this encoder–decoder approach is that a neural network needs to be able to compress all the necessary information of a source sentence into a fixed-length vector. This may make it difficult for the neural network to cope with long sentences, especially those that are longer than the sentences in the training corpus."

attention001.gif

Attention provides a solution to the bottleneck problem

  • Core idea: on each step of the decoder, use a direct connection to the encoder to focus on a particular part of the source sequence. Attention is basically a technique to compute a weighted sum of the values (in the encoder), dependent on another value (in the decoder).

The main idea of attention can be summarized as mention the OpenAi's article:

"... every output element is connected to every input element, and the weightings between them are dynamically calculated based upon the circumstances, a process called attention."

Query and Values

  • In the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)
  • The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
  • Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

2) Transformers for Computer Vision

Transfomer based architectures were used not only for NLP but also for computer vision tasks. One important example is Vision Transformer ViT that represents a direct application of Transformers to image classification, without any image-specific inductive biases. As mentioned in the paper:

"We show that reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks"

"Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks"

vit

As we see, an input image is splitted into patches which are treated the same way as tokens (words) in an NLP application. Position embeddings are added to the patch embeddings to retain positional information. Similar to BERT’s class token, a classification head is attached here and used during pre-training and fine-tuning. The model is trained on image classification in supervised fashion.

Multi-head attention

The intuition is similar to have a multi-filter in CNNs. Here we can have multi-head attention, to give the network more capacity and ability to learn different attention patterns. By having multiple different layers that generate (or project) the vectors of queries, keys and values, we can learn multiple representations of these queries, keys and values.

mha

Where each token is projected (in a learnable way) into three vecrors Q, K, and V:

  • Q: Query vector: What I want
  • K: Key vector: What type of info I have
  • V: Value vector: What actual info I have

3) Visualizing the attention

Open In Colab

The basic ViT architecture is used, however with only one transformer layer with one (or four) head(s) for simplicity. The model is trained on CIFAR-10 classification task. The image is splitted in to 12 x 12 = 144 patches as usual, and after training, we can see the 144 x 144 attention scores (where each patch can attend to the others).

imgpatches

Attention map represents the correlation (attention) between all the tokens, where the sum of each row equals 1 representing the probability distribution of attention from a query patch to all others.

attmap

Long distance attention we can see two interesting patterns where background patch attends to long distance other background patches, and this flight patch attends to long distance other flight patches.

attpattern

We can try more heads and more transfomer layers and inspect the attention patterns.

attanim


4) MLP-Mixer

Open In Colab

MLP-Mixer is proposed in the paper An all-MLP Architecture for Vision. As mentioned in the paper:

"While convolutions and attention are both sufficient for good performance, neither of them is necessary!"

"Mixer is a competitive but conceptually and technically simple alternative, that does not use convolutions or self-attention"

Mixer accepts a sequence of linearly projected image patches (tokens) shaped as a “patches × channels” table as an input, and maintains this dimensionality. Mixer makes use of two types of MLP layers:

mixer

  • Channel-mixing MLPs allow communication between different channels, they operate on each token independently and take individual rows of the table as inputs
  • Token-mixing MLPs allow communication between different spatial locations (tokens); they operate on each channel independently and take individual columns of the table as inputs.

These two types of layers are interleaved to enable interaction of both input dimensions.

"The computational complexity of the network is linear in the number of input patches, unlike ViT whose complexity is quadratic"

"Unlike ViTs, Mixer does not use position embeddings"

It is commonly observed that the first layers of CNNs tend to learn detectors that act on pixels in local regions of the image. In contrast, Mixer allows for global information exchange in the token-mixing MLPs.

"Recall that the token-mixing MLPs allow global communication between different spatial locations."

vizmixer

The figure shows hidden units of the four token-mixing MLPs of Mixer trained on CIFAR10 dataset.


5) Hybrid MLP-Mixer and ViT

Open In Colab

We can use both the MLP-Mixer and ViT in one network architecture to get the best of both worlds.

mixvit

Adding a few self-attention sublayers to mixer is expected to offer a simple way to trade off speed for accuracy.


6) CovMixer

Open In Colab

Patches Are All You Need?

Is the performance of ViTs due to the inherently more powerful Transformer architecture, or is it at least partly due to using patches as the input representation.

ConvMixer, an extremely simple model that is similar in many aspects to the ViT and the even-more-basic MLP-Mixer

Despite its simplicity, ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive fields and content-aware behavior, the inductive bias of convolution is well-suited to vision tasks and leads to high data efficiency.

ConvMixers are substantially slower at inference than the competitors!

conmixer01


7) Hybrid MLP-Mixer and CovMixer

Open In Colab

Once again, we can use both the MLP-Mixer and ConvMixer in one network architecture to get the best of both worlds. Here is a simple example.

convmlpmixer


References and more information

Owner
Ibrahim Sobh
Ibrahim Sobh
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023