Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Overview

Self Supervised clusterer

Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retaining interesting image latent representations in the feature space using contrastive learning.

Installation

Currently successfully tested on Ubuntu 18.04 and Ubuntu 20.04, with python 3.6 and 3.8

Works for Pytorch versions >= 1.4. Launch following command to install all pd

pip3 install -r requirements.txt

Logs

All information is logged to tensorboard. If you activate the neptune flag, you can also make logs to Neptune.ai.

Tensorboard

To check logs of your trainings using tensorboard, use the command :

tensorboard --logdir=./logs/NAME_OF_TEST/events

The NAME_OF_TEST is generated automatically for each automatic training you launch, composed of the inputed name of the training you chose (explained further below in commands), and the exact date and time when you launched the training. For example test_on_nocadozole_20210518-153531

Neptune

Before using neptune as a log and output control tool, you need to create a neptune account and get your developer token. Create a neptune_token.txt file and store the token in it.

Create in neptune a folder for your outputs, with a name of your choice, then go to main.py and modify from line 129 :

if args.offline :
    CONNECTION_MODE = "offline"
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
                   api_token=token,
                   mode=CONNECTION_MODE,
                   )
else :
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
               api_token=token,
               )

Preparing your own data

All datasets will be put in the ./data folder. As you might have to create various different datasets inside, create a folder inside for each dataset you use, while giving it a linux-friendly name.

To be completed

Commands

  • Adding the --labels command means you have ground truth for classes, and you wish to use it in evaluation

  • Adding the --neptune command means you wish to log your data in neptune (Check logging section)

  • output_k is the number of clusters

  • model_name is the name you'll use to keep track of this specific model. Date of training launch will be added to its name.

  • augmentation is the contrastive loss augmentation types you'll be using. They can be consulted and modified in the datasets/datasetgetter.py file.

  • epochs is the maximal number of epochs you wish to have. It is 1000 by default

  • batch_size is the training batch size. Default is 32

  • val_batch is the validation batch size. Default is 10

  • sty_dim is the size of the style vector. default is 128

  • img_size size of input images

  • --debug is a flag for activating debug mode, where the training is very fast, just to check if everything is working fine

training from scratch
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation BBC --data_type BBBC021_196  --data_folder N1 --neptune --img_size 196
training using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --neptune --load_model testing_high_cluster_number_20210604-024131_
valiadtion using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --validation --neptune --load_model testing_high_cluster_number_20210604-024131_
Owner
Bendidi Ihab
Computational Biologist & DL Eng
Bendidi Ihab
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022