Laser device for neutralizing - mosquitoes, weeds and pests

Overview

Laser device for neutralizing - mosquitoes, weeds and pests (in progress)

Tweet
Hardware demonstrations
Hardware demonstrations

Here I will post information for creating a laser device.

alt tag

A warning!!

Don't use the power laser!

The main limiting factor in the development of this technology is the danger of the laser may damage the eyes. The laser can enter a blood vessel and clog it, it can get into a blind spot where nerves from all over the eye go to the brain, you can burn out a line of "pixels" And then the damaged retina can begin to flake off, and this is the path to complete and irreversible loss of vision. This is dangerous because a person may not notice at the beginning of damage from a laser hit: there are no pain receptors there, the brain completes objects in damaged areas (remapping of dead pixels), and only when the damaged area becomes large enough person starts to notice that some objects not visible. We can develop additional security systems, such as human detection, audio sensors, etc. But in any case, we are not able to make the installation 100% safe, since even a laser can be reflected and damage the eye of a person who is not in the field of view of the device and at a distant distance. Therefore, this technology should not be used at home. My strong recommendation - don't use the power laser! I recommend making a device that will track an object using a safe laser pointer.

How It Works

To detect x,y coordinates initially we used Haar cascades in RaspberryPI after that yolov4-tiny in Jetson nano. For Y coordinates - stereo vision.
Calculation necessary value for the angle of mirrors.
RaspberryPI/JetsonNano by SPI sends a command for galvanometer via DAC mcp4922. Electrical scheme (here). From mcp4922 bibolar analog signal go to amplifair. Finally, we have -12 and + 12 V for control positions of the mirrors.

General information

The principle of operation
alt tag
Single board computer to processes the digital signal from the camera and determines positioning to the object, and transmits the digital signal to the analog display - 3, where digital-to-analog converts the signal to the range of 0-5V. Using a board with an operational amplifier, we get a bipolar voltage, from which the boards with the motor driver for the galvanometer are powered - 4, from where the signal goes to galvanometers -7. The galvanometer uses mirrors to change the direction of the laser - 6. The system is powered by the power supply - 5. Cameras 2 determine the distance to the object. The camera detects mosquito and transmits data to the galvanometer, which sets the mirrors in the correct position, and then the laser turns on.

Dimensions

alt tag
1 - PI cameras, 2 - galvanometer, 3 - Jetson nano, 4 - adjusting the position to the object, 5 - laser device, 6 - power supply, 7 - galvanometer driver boards, 8 - analog conversion boards

Galvanometer setting

In practice, the maximum deflection angle of the mirrors is set at the factory, but before use, it is necessary to check, for example, according to the documentation, our galvanometer had a step width of 30, but as it turned out we have only 20 alt tag
Maximum and minimum positions of galvanometer mirrors:
a - lower position - 350 for x mirror;
b - upper position - 550 for x mirror;
c - lower position - 00 for y mirror;
d - upper position - 250 for y mirror;

Determining the coordinates of an object

X,Y - coordinate

alt tag

Z-coordinate

We created GUI, source here. At the expense of computer vision, the position of the object in the X, Y plane is determined - based on which its ROI area is taken. Then we use stereo vision to compile a depth map and for a given ROI with the NumPy library tool - np.average we calculated the average value for the pixels of this area, which will allow us to calculate the distance to the object.
alt tag

You can find more detail in the published paper in preprint - Low-Cost Stereovision System (Disparity Map) For Few Dollars

Determining the angle of galvanometer mirror

angle of galvanometer mirror theory

The laser beam obeys all the optical laws of physics, therefore, depending on the design of the galvanometer, the required angle of inclination of the mirror – α, can be calculated through the geometrical formulas. In our case, through the tangent of the angle α, where it is equal to the ratio of the opposing side – X(Y) (position calculated by deep learning) to the adjacent side - Z (calculated by stereo vision).
alt tag

angle of galvanometer mirror practice

alt tag

We need more FPS

For single boards, computers are actual problems with FPS. For one object with Jetson was reached the next result for the Yolov4-tiny model.

Framework
with Keras: 4-5 FPS
with Darknet: 12-15 FPS
with Darknet Tensor RT: 24-27 FPS
with Darknet DeepStream: 23-26 FPS
with tkDNN: 30-35 FPS

You can find more detail in the published paper in arxiv - Increasing FPS for single board computers and embedded computers in 2021 (Jetson nano and YOVOv4-tiny). Practice and review

Demonstrations

In this video - a laser (the red point) tries to catch a yellow LED. It is an adjusting process but in fact, instead, a yellow LED can be a mosquito, and instead, the red laser can be a powerful laser.
Hardware demonstrations

Security questions

An additional device - a security module that will turn off the laser:

  • Use additional cameras to fix people
  • Audio sensors to capture voice and noise
  • To mechanically shoot down the laser
  • To use a thermal camera if there is any warm effect, turn it off - this is probably also possible to protect against fires consider not to overheat.
  • Teach the system to record the process of laser reflection from any random glass or other mirror surfaces (maybe before turning on the power laser - for checking turn on the simple laser).

Publication and Citation

  • Ildar, R. (2021). Machine vision for low-cost remote control of mosquitoes by power laser. Journal of Real-Time Image Processing
    availabe here
  • Rakhmatulin I, Andreasen C. (2020). A Concept of a Compact and Inexpensive Device for Controlling Weeds with Laser Beams. Agronomy
    availabe here
  • Rakhmatuiln I, Kamilaris A, Andreasen C. Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review. Remote Sensing. 2021; 13(21):4486. https://doi.org/10.3390/rs13214486

Contacts

For any questions write to me by mail - [email protected]

Owner
Ildaron
Electronic research engineer. Hardware. Machine vision.
Ildaron
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021