Auto-Encoding Score Distribution Regression for Action Quality Assessment

Related tags

Deep LearningDAE-AQA
Overview

DAE-AQA

It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. DAE Structure

1.Introduction

DAE is a model for action quality assessment(AQA). It takes both advantages of regression algorithms and label distribution learning (LDL). Specifically, it encodes videos into distributions and uses the reparameterization trick in variational auto-encoders (VAE) to sample scores, which establishes a more accurate mapping between video and score. It can be appled to many scenarios. e.g, judgment of accuracy of an operation or score estimation of an diving athlete’s performance.

2.Datasets

MTL-AQA dataset

MTL-AQA dataset was orignially presented in the paper What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment (CVPR 2019) [arXiv], where the authors provided the YouTube links of untrimmed long videos and the corresponding annotations at here. The processed MTL-AQA dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

The whole data structure should be:

DAE_AQA
├── data
|  └── frames
|  └── info
...

JIGSAWS dataset

JIGSAWS dataset was presented in the paper Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling (MICCAI workshop 2014), where the raw videos could be downloaded at here. We're typographing this part of the code, and we'll release it soon. The whole data structure is same as MTL-AQA. The processed JIGSAWS dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

3.Training

training DAE model:

$ python DAE.py --log_info=DAE --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

training DAE-MT model:

$ python DAE_MT.py --log_info=DAE-MT --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

All default parameters are set in config.py. Considering that the memory of video processing on GPU is quite large, we suggest using small batch for training.

4.Testing

We provided a pre-trained DAE-MT model weight with a correlation coefficient of 0.9449 on MTL-AQA test dataset. You can download it through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

CONTACT US:

If you have any questiones or meet any bugs, please contact us!

E-mail: [email protected]

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022