Deep Learning Algorithms for Hedging with Frictions

Overview

Deep Learning Algorithms for Hedging with Frictions

This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and the Deep Hedging, as described in reference [2]. Both of them are implemented in PyTorch.

Basic Setup

The special case with following assumptions is considered:

  • the dynamic of the market satisfies that return and voalatility are constant;
  • the cost parameter is constant;
  • the endowment volatility is in the form of where is constant;
  • the frictionless strategy satisfies that and

On top of that, we consider two calibrated models: a quadratic transaction cost models, and a power cost model with elastic parameter of 3/2. In both experiments, the FBSDE solver and the Deep Hedging are implemented, as well as the asymptotic formula from Theorem 3.6 in reference [2].

For the case of quadratic costs, the ground truth from equation (3.7) in reference [2] is also compared. See Script/sample_code_quadratic_cost.py for details.

For the case of 3/2 power costs, the ground truth is no longer available in closed form. Meanwhile, in regard to the asymptotic formula g(x) in equation (3.8) in reference [2], the numerical solution by SciPy is not stable, thus it is solved via MATHEMATICA (see Script/power_cost_ODE.nb). Consequently, the value of g(x) corresponding to x ranging from 0 to 50 by 0.0001, is stored in table Data/EVA.txt. Benefitted from the oddness and the growth conditions (equation (3.9) in reference [2]), the value of g(x) on is obatinable. Following that, the numerical result of the asymptotic solution is compared with two machine learning methods. See Script/sample_code_power_cost.py for details.

The general variables and the market parameters in the code are summarized below:

Variable Meaning
q power of the trading cost, q
S_OUTSTANDING total shares in the market, s
TIME trading horizon, T
TIME_STEP time discretization, N
DT
GAMMA risk aversion,
XI_1 endowment volatility parameter,
PHI_INITIAL initial holding,
ALPHA market volatility,
MU_BAR market return,
LAM trading cost parameter,
test_samples number of test sample path, batch_size

FBSDE solver

For the detailed implementation of the FBSDE solver, see Script/sample_code_FBSDE.py;
The core dynamic is defined in the method System.forward(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
dW_t iid normally distributed random variables with mean zero and variance ,
W_t Brownian motion at time t,
XI_t Brownian motion at time t,
sigma_t vector of 0
sigmaxi_t vector of 1
X_t vector of 1
Y_t vector of 0
Lam_t 1
in_t input of the neural network
sigmaZ_t output of the neural network ,
Delta_t difference between the frictional and frictionless positions (the forward component) divided by the endowment parameter,
Z_t the backward component,

Deep Hedging

For the detailed implementation of the Deep Hedging, see Script/sample_code_Deep_Hedging.py;
The core dynamic of the Deep Hedging is defined in the function TRAIN_Utility(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
PHI_0_on_s initial holding divided by the total shares in the market,
W collection of the Brownian motion, throughout the trading horizon,
XI_W_on_s collection of the endowment volatility divided by the total shares in the market, throughout the trading horizon,
PHI_on_s collection of the frictional positions divided by the total shares in the market, throughout the trading horizon,
PHI_dot_on_s collection of the frictional trading rate divided by the total shares in the market, throughout the trading horizon,
loss_Utility minus goal function,

Example

Here we proivde an example for the quadratic cost case (q=2) with the trading horizon of 21 days (TIME=21).

The trading horizon is discretized in 168 time steps (TIME_STEP=168). The parameters are taken from the calibration in [1]:

Parameter Value Code
agent risk aversion GAMMA=1.66*1e-13
total shares outstanding S_OUTSTANDING=2.46*1e11
stock volatility ALPHA=1.88
stock return MU_BAR=0.5*GAMMA*ALPHA**2
endowment volatility parameter XI_1=2.19*1e10
trading cost parameter LAM=1.08*1e-10

And these lead to the optimal trading rate (left panel) and the optimal position (right panel) illustrated below, leanrt by the FBSDE solver and the Deep Hedging, as well as the ground truth and the Leading-order solution based on the asymptotic formula:

TR=21_q=2
With the same simulation with test batch size of 3000 (test_samples=3000), the expectation and the standard deviation of the goal function and the mean square error of the terminal trading rate are calculated, as summarized below:

Method
FBSDE
Deep Q-learning
Leading Order Approximation
Ground Truth

See more examples and discussion in Section 4 of paper [2].

Acknowledgments

Reference

[1] Asset Pricing with General Transaction Costs: Theory and Numerics, L. Gonon, J. Muhle-Karbe, X. Shi. [Mathematical Finance], 2021.

[2] Deep Learning Algorithms for Hedging with Frictions, X. Shi, D. Xu, Z. Zhang. [arXiv], 2021.

Owner
Xiaofei Shi
Xiaofei Shi
Özlem Taşkın 0 Feb 23, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021