Adversarially Learned Inference

Related tags

Deep LearningALI
Overview

Adversarially Learned Inference

Code for the Adversarially Learned Inference paper.

Compiling the paper locally

From the repo's root directory,

$ cd papers
$ latexmk --pdf adverarially_learned_inference

Requirements

  • Blocks, development version
  • Fuel, development version

Setup

Clone the repository, then install with

$ pip install -e ALI

Downloading and converting the datasets

Set up your ~/.fuelrc file:

$ echo "data_path: \"<MY_DATA_PATH>\"" > ~/.fuelrc

Go to <MY_DATA_PATH>:

$ cd <MY_DATA_PATH>

Download the CIFAR-10 dataset:

$ fuel-download cifar10
$ fuel-convert cifar10
$ fuel-download cifar10 --clear

Download the SVHN format 2 dataset:

$ fuel-download svhn 2
$ fuel-convert svhn 2
$ fuel-download svhn 2 --clear

Download the CelebA dataset:

$ fuel-download celeba 64
$ fuel-convert celeba 64
$ fuel-download celeba 64 --clear

Training the models

Make sure you're in the repo's root directory.

CIFAR-10

$ THEANORC=theanorc python experiments/ali_cifar10.py

SVHN

$ THEANORC=theanorc python experiments/ali_svhn.py

CelebA

$ THEANORC=theanorc python experiments/ali_celeba.py

Toy task

$ THEANORC=theanorc python experiments/ali_mixture.py
$ THEANORC=theanorc python experiments/gan_mixture.py

Evaluating the models

Samples

$ THEANORC=theanorc scripts/sample [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/sample ali_cifar10.tar

Interpolations

$ THEANORC=theanorc scripts/interpolate [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/interpolate celeba ali_celeba.tar

Reconstructions

$ THEANORC=theanorc scripts/reconstruct [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/reconstruct cifar10 ali_cifar10.tar

Semi-supervised learning on SVHN

First, preprocess the SVHN dataset with the learned ALI features:

$ THEANORC=theanorc scripts/preprocess_representations [main_loop.tar] [save_path.hdf5]

e.g.

$ THEANORC=theanorc scripts/preprocess_representations ali_svhn.tar ali_svhn_preprocessed.hdf5

Then, launch the semi-supervised script:

$ python experiments/semi_supervised_svhn.py ali_svhn.tar [save_path.hdf5]

e.g.

$ python experiments/semi_supervised_svhn.py ali_svhn_preprocessed.hdf5

[...]
Validation error rate = ... +- ...
Test error rate = ... +- ...

Toy task

$ THEANORC=theanorc scripts/generate_mixture_plots [ali_main_loop.tar] [gan_main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/generate_mixture_plots ali_mixture.tar gan_mixture.tar
Comments
  • Conditional Generation

    Conditional Generation

    I'm interested in getting the update to this codebase that includes the conditional generation, as covered in the more recent version of the paper (related image below). Can you let me know if that will be added to the repo? celeba_conditional_sequence

    opened by dribnet 8
  • mistake in D(x,z) input size

    mistake in D(x,z) input size

    In table 5 from the paper you state that the input size for D(x,z) is 1024x1x1 which I think it's wrong after looking at the previous output sizes D(x) and D(z). I think that should be 1536x1x1.

    Is that assumption correct?

    opened by edgarriba 5
  • deserialization of models hangs

    deserialization of models hangs

    Training goes well for me using the scripts in experiments with the latest version of blocks, but then when I run any subsequent command that uses the generated model like scripts/sample or scripts/reconstruct, the command hangs indefinitely. My guess is that the deserialization is getting jammed up.

    I can look into it more - not yet familiar with the new tar format - but curious if this might be a known issue.

    opened by dribnet 3
  • Fuel version problem

    Fuel version problem

    I installed the current development version of fuel, but had some issue in fuel downloading.

    $ fuel-download celeba 64 $ fuel-convert celeba 64 $ fuel-download celeba 64 --clear

    The error message I got is: fuel-download: error: unrecognized arguments: 64 if I remove 64, I got: TypeError: init() got an unexpected keyword argument 'max_value'

    Could someone please specify what version or commits of fuel and progressbar should I use? Thanks

    opened by hope-yao 1
  • Where to use the reparametrization trick

    Where to use the reparametrization trick

    In the decoder module. I found that z is sampled from N(0, 1), so where did you use the reparametrization trick described in formual (2) and (3) in the paper

    opened by wuhaozhe 0
  • semi-supervised learning

    semi-supervised learning

    Hello,I read the paper and the source code.And it mentioned 'The last three hidden layers of the encoder as well as its output are concatenated to form a 8960-dimensional feature vector.' in section 4.3 of the paper.Could you please tell me how to compute the dimension?Thanks very much

    opened by C-xiaomeng 1
  • ImportError: No module named ali.utils

    ImportError: No module named ali.utils

    I followed the same steps in the readme file, but when I run this line

    $ THEANORC=theanorc python experiments/ali_cifar10.py

    I get:

    Traceback (most recent call last):
      File "experiments/ali_cifar10.py", line 3, in <module>
        from ali.utils import get_log_odds, conv_brick, conv_transpose_brick, bn_brick
    ImportError: No module named ali.utils
    
    opened by xtarx 0
  • Preprocess_representation has a bug for me

    Preprocess_representation has a bug for me

    Hi, I was trying to reproduce the representation learning results of paper. Everything works fine except "preprocess_representations" script. It is leading to this error:

    File "scripts/preprocess_representations", line 32, in preprocess_svhn bricks=[ali.encoder.layers[-9], ali.encoder.layers[-6], AttributeError: 'GaussianConditional' object has no attribute 'layers'

    Any help would be appreciated.

    opened by MarziEd 1
  • Semi-supervised learning

    Semi-supervised learning

    I've been trying to reproduce your figures for semi-supervised learning on CIFAR-10 (19.98% with 1000 labels). This result is based on the technique proposed in Salimans et al. (2016), not SVMs. Is there any way you can include your code, or at least any changes to the hyperparameters in ali_cifar10.py?

    Thanks in advance for your help.

    opened by christiancosgrove 7
Releases(v1)
Owner
Mohamed Ishmael Belghazi
Mohamed Ishmael Belghazi
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022