Bayesian Additive Regression Trees For Python

Overview

BartPy

Build Status

Introduction

BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1].

Reasons to use BART

  • Much less parameter optimization required that GBT
  • Provides confidence intervals in addition to point estimates
  • Extremely flexible through use of priors and embedding in bigger models

Reasons to use the library:

  • Can be plugged into existing sklearn workflows
  • Everything is done in pure python, allowing for easy inspection of model runs
  • Designed to be extremely easy to modify and extend

Trade offs:

  • Speed - BartPy is significantly slower than other BART libraries
  • Memory - BartPy uses a lot of caching compared to other approaches
  • Instability - the library is still under construction

How to use:

There are two main APIs for BaryPy:

  1. High level sklearn API
  2. Low level access for implementing custom conditions

If possible, it is recommended to use the sklearn API until you reach something that can't be implemented that way. The API is easier, shared with other models in the ecosystem, and allows simpler porting to other models.

Sklearn API

The high level API works as you would expect

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
model.fit(X, y) # Fit the model
predictions = model.predict() # Make predictions on the train set
out_of_sample_predictions = model.predict(X_test) # Make predictions on new data

The model object can be used in all of the standard sklearn tools, e.g. cross validation and grid search

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
cross_validate(model)
Extensions

BartPy offers a number of convenience extensions to base BART. The most prominent of these is using BART to predict the residuals of a base model. It is most natural to use a linear model as the base, but any sklearn compatible model can be used

from bartpy.extensions.baseestimator import ResidualBART
model = ResidualBART(base_estimator=LinearModel())
model.fit(X, y)

A nice feature of this is that we can combine the interpretability of a linear model with the power of a trees model

Lower level API

BartPy is designed to expose all of its internals, so that it can be extended and modifier. In particular, using the lower level API it is possible to:

  • Customize the set of possible tree operations (prune and grow by default)
  • Control the order of sampling steps within a single Gibbs update
  • Extend the model to include additional sampling steps

Some care is recommended when working with these type of changes. Through time the process of changing them will become easier, but today they are somewhat complex

If all you want to customize are things like priors and number of trees, it is much easier to use the sklearn API

Alternative libraries

References

[1] https://arxiv.org/abs/0806.3286 [2] http://www.gatsby.ucl.ac.uk/~balaji/pgbart_aistats15.pdf [3] https://arxiv.org/ftp/arxiv/papers/1309/1309.1906.pdf [4] https://cran.r-project.org/web/packages/BART/vignettes/computing.pdf

XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022