The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Overview

Prior-Enhanced network with Meta-Prototypes (PEMP)

This is the PyTorch implementation of PEMP.

  • Overview of PEMP

Framework

  • Meta-Prototypes & Adaptive Prototypes

meta-prototypes

1. Preliminaries

  • Ubuntu 18.04 (tested)
  • Geforce GTX 2080Ti or Tesla V100 (tested)

1.1 Setup Python Enveriment

# Install Python and packages
conda create -n torch python=3.7
source activate torch
conda install numpy=1.19.1
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch 
conda install tqdm scipy pymongo opencv
pip install sacred==0.8.2 dropblock==0.3.0 pycocotools

1.2 Manage Experiments

We utilize Sacred for managing experiments (both training and testing).

If the users only want to perform the inference on PEMP, feel free to skip this subsection and continue on preparing datasets.

If the users want to re-train PEMP, please refer to this for setting up the database and visualization tools.

1.3 Prepare Data & Pre-trained Models

Please refer to this for preparing the data and pre-trained models.

1.4 Project Structure

  • ./core/ contains the trainer, evaluator, losses, metrics and solver.
  • ./data/ contains the datasets and pre-trained weights of VGG and ResNet.
  • ./data_kits/ contains the data loaders.
  • ./entry/ contains the entry points of the supported models.
  • ./networks/ contains the network implementation of the supported models.
  • ./scripts/ contains the running scripts of the supported models.
  • ./http/ contains the backend and the frontend of the visualization tools.
  • ./utils/ contains a timer, a logger, and some helper functions.
  • ./config.py contains global configuration and device configuration.

1.5 Supports (References)

Supports Source Link
Datasets PASCAL-5i http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
COCO-20i https://cocodataset.org/
Models Baseline (ours)
PEMP (ours)
PANet https://github.com/kaixin96/PANet
CaNet (only 1-shot) https://github.com/icoz69/CaNet
RPMMs (only 1-shot) https://github.com/Yang-Bob/PMMs
PFENet https://github.com/Jia-Research-Lab/PFENet

2. Training and Testing

2.1 Reproducibility

For reproducing the results, please make sure:

  1. Install the exact versions of packages(python, numpy, pytorch, torchvision and cudatoolkit).

  2. Use the random seed 1234 for the packages(random, numpy and pytorch), which is the default setting in the released code.

  3. Finish the unittest of the data loaders and get OK to assert the random seed works:

    PYTHONPATH=./ python -m unittest data_kits.pascal_voc_test
    PYTHONPATH=./ python -m unittest data_kits.coco_test

2.2 Usage

  • Start the MongoDB and Omniboard first.

  • Basic usage

CUDA_VISIBLE_DEVICES="0" PYTHONPATH=./ python entry/<MODEL>.py <COMMAND> with <UPDATE>
  • Parameter explanation
# <MODEL>:
#     We support several models: baseline, pemp_stage1, pemp_stage2, panet, canet, pfenet
#
# <COMMAND>:
#     We define three commands: train, test, visualize
#     Sacred provide several commands: print_config, print_dependencies
#
# <UPDATE>:
#    The user can update parameters. Please run following command for help.
#        PYTHONPATH=./ python entry/pemp_stage1.py help train
#	     PYTHONPATH=./ python entry/pemp_stage1.py help test
#        PYTHONPATH=./ python entry/pemp_stage1.py help visualize

# Get help for all the parameters
PYTHONPATH=./ python entry/pemp_stage1.py print_config
  • For simplicity, we provide some scripts for running experiments
# Template:
# bash ./scripts/pemp_stage1.sh train 0 [split=0] [shot=1] [data.dataset=PASCAL] [-u] [-p]
# bash ./scripts/pemp_stage1.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [exp_id=1] [-u] [-p]
# bash ./scripts/pemp_stage2.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [s1.id=1] [exp_id=5] [-u] [-p]

# Step1: Training/Testing PEMP_Stage1
bash ./scripts/pemp_stage1.sh train 0 split=0
bash ./scripts/pemp_stage1.sh test 0 split=0 exp_id=<S1_ID>

# Step2: Training/Testing PEMP_Stage2
bash ./scripts/pemp_stage2.sh train 0 split=0 s1.id=<S1_ID>
bash ./scripts/pemp_stage1.sh test 0 split=0 s1.id=<S1_ID> exp_id=<S2_ID>

3. Results (ResNet-50)

  • PASCAL-5i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
Baseline 1 45.48 59.97 51.35 43.31 50.03 67.58
RPMMS 53.86 66.45 52.76 51.31 56.10 70.32
PEMP 55.74 65.88 54.12 50.34 56.52 71.41
Baseline 5 52.47 66.31 59.85 51.02 57.41 71.90
RPMMS 56.28 67.34 54.52 51.00 57.30 -
PEMP 58.59 69.10 60.31 53.01 60.25 73.84
  • COCO-20i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
RPMMS 1 29.53 36.82 28.94 27.02 30.58 -
PEMP 29.28 34.09 29.64 30.36 30.84 63.13
RPMMS 5 33.82 41.96 32.99 33.33 35.52 -
PEMP 39.08 44.59 39.54 41.42 41.16 70.71

4. Visualization

We provide a simple tool for visualizing the segmentation prediction and response maps (see the paper).

Visualization tool

4.1 Evaluate and Save Predictions

# With pre-trained model
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005

# A test run contains 1000 episodes. For fewer episodes, set the `data.test_n`
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005 data.test_n=100

The prediction and response maps are saved in the directory ./http/static.

4.2 Start the Backend

# Instal flask 
conda install flask

# Start backend
cd http
python backend.py

# For 5-shot
python backend_5shot.py

4.3 Start the Frontend

Open the address https://localhost:17002 for browsing the results. ( https://localhost:17003 for 5-shot results)

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022