NLP Text Classification

Overview

多标签文本分类任务

近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以先从其中学习到一个好的表示,再将这些表示应用到其他任务中。最近的研究表明,基于大规模未标注语料库的预训练模型(Pretrained Models, PTM) 在NLP任务上取得了很好的表现。

大量的研究表明基于大型语料库的预训练模型(Pretrained Models, PTM)可以学习通用的语言表示,有利于下游NLP任务,同时能够避免从零开始训练模型。随着计算能力的发展,深度模型的出现(即 Transformer)和训练技巧的增强使得 PTM 不断发展,由浅变深。


本图片来自于:https://github.com/thunlp/PLMpapers

本示例展示了如何以BERT(Bidirectional Encoder Representations from Transformers)预训练模型Finetune完成多标签文本分类任务。

快速开始

代码结构说明

以下是本项目主要代码结构及说明:

pretrained_models/
├── deploy # 部署
│   └── python
│       └── predict.py # python预测部署示例
├── export_model.py # 动态图参数导出静态图参数脚本
├── predict.py # 预测脚本
├── README.md # 使用说明
├── data.py # 数据处理
├── metric.py # 指标计算
├── model.py # 模型网络
└── train.py # 训练评估脚本

数据准备

从Kaggle下载Toxic Comment Classification Challenge数据集并将数据集文件放在./data路径下。 以下是./data路径的文件组成:

data/
├── sample_submission.csv # 预测结果提交样例
├── train.csv # 训练集
├── test.csv # 测试集
└── test_labels.csv # 测试数据标签,数值-1代表该条数据不参与打分

模型训练

我们以Kaggle Toxic Comment Classification Challenge为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练

unset CUDA_VISIBLE_DEVICES
python -m paddle.distributed.launch --gpus "0" train.py --device gpu --save_dir ./checkpoints

可支持配置的参数:

  • save_dir:可选,保存训练模型的目录;默认保存在当前目录checkpoints文件夹下。
  • max_seq_length:可选,BERT模型使用的最大序列长度,最大不能超过512, 若出现显存不足,请适当调低这一参数;默认为128。
  • batch_size:可选,批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为32。
  • learning_rate:可选,Fine-tune的最大学习率;默认为5e-5。
  • weight_decay:可选,控制正则项力度的参数,用于防止过拟合,默认为0.0。
  • epochs: 训练轮次,默认为3。
  • warmup_proption:可选,学习率warmup策略的比例,如果0.1,则学习率会在前10%训练step的过程中从0慢慢增长到learning_rate, 而后再缓慢衰减,默认为0.0。
  • init_from_ckpt:可选,模型参数路径,热启动模型训练;默认为None。
  • seed:可选,随机种子,默认为1000。
  • device: 选用什么设备进行训练,可选cpu或gpu。如使用gpu训练则参数gpus指定GPU卡号。
  • data_path: 可选,数据集文件路径,默认数据集存放在当前目录data文件夹下。

代码示例中使用的预训练模型是BERT,如果想要使用其他预训练模型如ERNIE等,只需要更换modeltokenizer即可。

程序运行时将会自动进行训练,评估。同时训练过程中会自动保存模型在指定的save_dir中。 如:

checkpoints/
├── model_100
│   ├── model_state.pdparams
│   ├── tokenizer_config.json
│   └── vocab.txt
└── ...

NOTE:

  • 如需恢复模型训练,则可以设置init_from_ckpt,如init_from_ckpt=checkpoints/model_100/model_state.pdparams
  • 使用动态图训练结束之后,还可以将动态图参数导出成静态图参数,具体代码见export_model.py。静态图参数保存在output_path指定路径中。 运行方式:
python export_model.py --params_path=./checkpoints/model_1000/model_state.pdparams --output_path=./static_graph_params

其中params_path是指动态图训练保存的参数路径,output_path是指静态图参数导出路径。

导出模型之后,可以用于部署,deploy/python/predict.py文件提供了python部署预测示例。

NOTE:

  • 可通过threshold参数调整最终预测结果,当预测概率值大于threshold时预测结果为1,否则为0;默认为0.5。 运行方式:
python deploy/python/predict.py --model_file=static_graph_params.pdmodel --params_file=static_graph_params.pdiparams

待预测数据如以下示例:

Your bullshit is not welcome here.
Thank you for understanding. I think very highly of you and would not revert without discussion.

预测结果示例:

Data:    Your bullshit is not welcome here.
toxic:   1
severe_toxic:    0
obscene:         0
threat:          0
insult:          0
identity_hate:   0
Data:    Thank you for understanding. I think very highly of you and would not revert without discussion.
toxic:   0
severe_toxic:    0
obscene:         0
threat:          0
insult:          0
identity_hate:   0

模型预测

启动预测:

export CUDA_VISIBLE_DEVICES=0
python predict.py --device 'gpu' --params_path checkpoints/model_1000/model_state.pdparams

预测结果会以csv文件sample_test.csv保存在当前目录下。

Owner
Jason
Jason
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021