Styleformer - Official Pytorch Implementation

Overview

Styleformer -- Official PyTorch implementation

Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/2106.07023)

PWC PWC

Requirements

  • We have done all testing and development using 4 Titan RTX GPUs with 24GB.
  • 64-bit Python 3.7 and PyTorch 1.7.1.
  • Python libraries: pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3. We use the Anaconda3 2020.11 distribution which installs most of these by default.

Pretrained pickle

CIFAR-10 Styleformer-Large with FID 2.82 IS 9.94

STL-10 Styleformer-Medium with FID 20.11 IS 10.16

CelebA Styleformer-Linformer with FID 3.66

LSUN-Church Styleformer-Linformer with FID 7.99

Generating images

Pre-trained networks are stored as *.pkl files that can be referenced using local filenames

# Generate images using pretrained_weight 
python generate.py --outdir=out --seeds=100-105 \
    --network=path_to_pkl_file

Outputs from the above commands are placed under out/*.png, controlled by --outdir. Downloaded network pickles are cached under $HOME/.cache/dnnlib, which can be overridden by setting the DNNLIB_CACHE_DIR environment variable. The default PyTorch extension build directory is $HOME/.cache/torch_extensions, which can be overridden by setting TORCH_EXTENSIONS_DIR.

Preparing datasets

CIFAR-10: Download the CIFAR-10 python version and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/cifar10.zip

STL-10: Download the stl-10 dataset 5k training, 100k unlabeled images from STL-10 dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=48 --height=48

CelebA: Download the CelebA dataset Aligned&Cropped Images from CelebA dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=64 --height=64

LSUN Church: Download the desired categories(church) from the LSUN project page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/lsun/raw/church_lmdb --dest=~/datasets/lsunchurch.zip \
    --width=128 --height=128

Training new networks

In its most basic form, training new networks boils down to:

python train.py --outdir=~/training-runs --data=~/mydataset.zip --gpus=1 --batch=32 --cfg=cifar --g_dict=256,64,16 \
    --num_layers=1,2,2 --depth=32
  • --g_dict= it means 'Hidden size' in paper, and it must be match with image resolution.
  • --num_layers= it means 'Layers' in paper, and it must be match with image resolution.
  • --depth=32 it means minimum required depth is 32, described in Section 2 at paper.
  • --linformer=1 apply informer to Styleformer.

Please refer to python train.py --help for the full list. To train STL-10 dataset with same setting at paper, please fix the starting resolution 88 to 1212 at training/networks_Generator.py.

Quality metrics

Quality metrics can be computed after the training:

# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file
    
python calc_metrics.py --metrics=is50k --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file    

Citation

If you found our work useful, please don't forget to cite

@misc{park2021styleformer,
      title={Styleformer: Transformer based Generative Adversarial Networks with Style Vector}, 
      author={Jeeseung Park and Younggeun Kim},
      year={2021},
      eprint={2106.07023},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

The code is heavily based on the stylegan2-ada-pytorch implementation

Owner
Jeeseung Park
Machine learning
Jeeseung Park
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023