Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Paddle-PANet

目录

结果对比

CTW1500

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model Log
mmocr_PANet Resnet18 N ctw_config 77.6 83.8 80.6 -- --
PAN (paper) ResNet18 N config 84.6 77.7 81.0 - -
PaddlePaddle_PANet ResNet18 N panet_r18_ctw.py 84.51 78.62 81.46 Model Log

论文介绍

背景简介

这是发在2019ICCV上的一篇一阶段场景文本检测论文。主要是PSENet的升级版。PSENet虽然处理速度很快,准确度很高,但后处理过程繁琐,而且没办法和网络模型融合在一起,实现训练。PANet很好的解决了这一问题,把后处理过程也放入网络中,预测出三个loss,最后进行融合。

网络结构

上图为PAN的整个网络结构,网络主要由Backbone + Segmentation Head(FPEM + FFM) + Output(Text Region、Kernel、Similarity Vector)组成。

本文使用ResNet-18作为PAN的默认Backbone,并提出了低计算量的Segmentation Head(FPFE + FFM)以解决因为使用ResNet-18而导致的特征提取能力较弱,特征感受野较小且表征能力不足的缺点。

此外,为了精准地重建完整的文字实例(text instance),提出了一个可学习的后处理方法——像素聚合法(PA),它能够通过预测出的相似向量来引导文字像素聚合到正确的kernel上去。

下面将详细介绍一下上面的各个部分。

Backbone

Backbone选择的是resnet18, 提取stride为4,8,16,32的conv2,conv3,conv4,conv5的输出作为高低层特征。每层的特征图的通道数都使用1*1卷积降维至128得到轻量级的特征图Fr。

Segmentation Head

PAN使用resNet-18作为网络的默认backbone,虽减少了计算量,但是backbone层数的减少势必会带来模型学习能力的下降。为了提高效率,作者在 resNet-18基础上提出了一个低计算量但可高效增强特征的分割头Segmentation Head。它由两个关键模块组成:特征金字塔增强模块(Feature Pyramid Enhancement Module,FPEM)、特征融合模块(Feature Fusion Module,FFM)。

FPEM

Feature Pyramid Enhancement Module(FPEM),即特征金字塔增强模块。FPEM呈级联结构且计算量小,可以连接在backbone后面让不同尺寸的特征更深、更具表征能力,结构如下:

FPEM是一个U形模组,由两个阶段组成,up-scale增强、down-scale增强。up-scale增强作用于输入的特征金字塔,它以步长32,16,8,4像素在特征图上迭代增强。在down-scale阶段,输入的是由up-scale增强生成的特征金字塔,增强的步长从4到32,同时,down-scale增强输出的的特征金字塔就是最终FPEM的输出。 FPEM模块可以看成是一个轻量级的FPN,只不过这个FPEM计算量不大,可以不停级联以达到不停增强特征的作用。

FFM

Feature Fusion Module(FFM)模块用于融合不同尺度的特征,其结构如下:

最后通过上采样将它们Concatenate到一起。

模型最后预测三种信息: 1、文字区域 2、文字kernel 3、文字kernel的相似向量

Loss

其中文字区域和kernel预测loss为:

快速安装

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install env

Install paddle following the official tutorial.

pip install -r requirement.txt
./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Pretrain Backbone

download resent18 pre-train model in pretrain/resnet18.pdparams

pretrain_resnet18 password: j5g3

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py config/pan/pan_r18_ctw.py
#checkpoint continue
python3.7 dist_train.py config/pan/pan_r18_ctw_train.py --nprocs 1 --resume checkpoints/pan_r18_ctw_train

Evaluation

The evaluation scripts of CTW 1500 dataset. CTW

Text detection

./start_test.sh

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

This project is released under the Apache 2.0 license.

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}
Owner
Dreams Are Messages From The Deep🪐
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022