Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Overview

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

This repository is the official PyTorch implementation of Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (arxiv, supplementary).

🚀 🚀 🚀 News:


Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

Requirements

  • Python 3.7, PyTorch >= 1.6, scipy >= 1.6.3
  • Requirements: opencv-python
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5

Note: this repository is based on BasicSR. Please refer to their repository for a better understanding of the code framework.

Quick Run

Download stage3_MANet+RRDB_x4.pth from release and put it in ./pretrained_models. Then, run this command:

cd codes
python test.py --opt options/test/test_stage3.yml

Data Preparation

To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used datasets can be downloaded here.

Training

Step1: to train MANet, run this command:

python train.py --opt options/train/train_stage1.yml

Step2: to train non-blind RRDB, run this command:

python train.py --opt options/train/train_stage2.yml

Step3: to fine-tune RRDB with MANet, run this command:

python train.py --opt options/train/train_stage3.yml

All trained models can be downloaded from release. For testing, downloading stage3 models is enough.

Testing

To test MANet (stage1, kernel estimation only), run this command:

python test.py --opt options/test/test_stage1.yml

To test RRDB-SFT (stage2, non-blind SR with ground-truth kernel), run this command:

python test.py --opt options/test/test_stage2.yml

To test MANet+RRDB (stage3, blind SR), run this command:

python test.py --opt options/test/test_stage3.yml

Note: above commands generate LR images on-the-fly. To generate testing sets used in the paper, run this command:

python prepare_testset.py --opt options/test/prepare_testset.yml

Interactive Exploration of Kernels

To explore spaitally variant kernels on an image, use --save_kernel and run this command to save kernel:

python test.py --opt options/test/test_stage1.yml --save_kernel

Then, run this command to creat an interactive window:

python interactive_explore.py --path ../results/001_MANet_aniso_x4_test_stage1/toy_dataset1/npz/toy1.npz

Results

We conducted experiments on both spatially variant and invariant blind SR. Please refer to the paper and supp for results.

Citation

@inproceedings{liang21manet,
  title={Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution},
  author={Liang, Jingyun and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on BasicSR, MMSR, IKC and KAIR. Please also follow their licenses. Thanks for their great works.

Comments
  • Training and OOM

    Training and OOM

    Thanks for your code. I tried to train the model with train_stage1.yml, and the Cuda OOM. I am using 2080 Ti, I tried to reduce the batch size from 16 to 2 and the GT_size from 192 to 48. However, the training still OOM. May I know is there anything I missed? Thanks.

    opened by hcleung3325 9
  • [How to get SR image by spatially variant estimated blur kernels]

    [How to get SR image by spatially variant estimated blur kernels]

    Hi, Thank you for your excellent and interesting work! I'm not so clear about the process after kernels estimation during SR reconstruction after reading your paper. Could you please explain?

    opened by CaptainEven 7
  • The method of creating kernels

    The method of creating kernels

    I noticed that the function for creating kernel ('anisotropic_gaussian_kernel_matlab') is different from the standard gaussian distribution (e.g. the method that used in IKC, https://github.com/yuanjunchai/IKC/blob/2a846cf1194cd9bace08973d55ecd8fd3179fe48/codes/utils/util.py#L244). I am wondering why a different way is used here. Actually, a test dataset created by IKC with same sigma range seems to have poor performance on MANet, and vice versa.

    opened by zhiqiangfu 3
  • [import error]

    [import error]

        k = scipy.stats.multivariate_normal.pdf(pos, mean=[0, 0], cov=cov)
    AttributeError: module 'scipy' has no attribute 'stats'
    

    scipy version error? So, which version of scipy is required?

    opened by CaptainEven 2
  • A letter from afar

    A letter from afar

    Good evening, boss! I recently discovered your work about MANet.I found that the length of the gaussian kernel your method generated is equal to 18.Does this setting have any specific meaning? image

    opened by fenghao195 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • About LR_Image PSNR/SSIM

    About LR_Image PSNR/SSIM

    Many thanks for your excellent work!

    I wonder what is the LR_Image PSNR/SSIM in the ablation study to evaluate the MANet about kernel prediction, and how to compute these?

    opened by Shaosifan 0
  • Questions about the paper

    Questions about the paper

    Thanks again for your great work. I have several questions about the paper. In Figure 2, you mentioned the input for MANet is a LR, but the input for your code seems to be DIV2K GT. Is there any further process I miss? Also, is that possible for the whole model trained in y-channel since my deployed environment only deals with y-channel? Thanks.

    opened by mrgreen3325 0
  • Issue about class BatchBlur_SV in utils.util

    Issue about class BatchBlur_SV in utils.util

    MANet/codes/utils/util.py Line 661: kernel = kernel.flatten(2).unsqueeze(0).expand(3,-1,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[1, B, HW, l^2] ->[C, B, HW, l^2] I think it is wrong, because it is not corresponding to the shape of pad.

    The line 661 should be kernel = kernel.flatten(2).unsqueeze(1).expand(-1, 3,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[B, 1, HW, l^2] ->[B, C, HW, l^2]

    opened by jiangmengyu18 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022