Lite-HRNet: A Lightweight High-Resolution Network

Overview

LiteHRNet Benchmark

🔥 🔥 Based on MMsegmentation 🔥 🔥

Cityscapes

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.81 80.6 10 71.81 80.6 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_320k_cityscapes 71.96 80.43 10 71.96 80.43 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_640k_cityscapes 69.29 78.91 8 69.29 78.91 8 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_160k_cityscapes 68.99 77.63 10 68.99 77.63 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.42 78.72 10 70.42 78.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_640k_cityscapes 67.12 75.84 7 67.12 75.84 7 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_160k_cityscapes 73.81 82.42 10 73.81 82.42 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.46 82.41 10 74.46 82.41 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.15 79.65 6 69.15 79.65 6 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.11 80.72 10 72.11 80.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.12 80.15 10 72.12 80.15 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_640k_cityscapes 67.31 77.76 5 67.31 77.76 5 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.49 79.95 10 71.49 79.95 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_320k_cityscapes 73.03 81.35 10 73.03 81.35 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_640k_cityscapes 68.06 76.67 8 68.26 77.17 7 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_160k_cityscapes 69.43 78.15 10 69.43 78.15 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.61 78.87 10 70.61 78.87 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_640k_cityscapes 63.83 73.11 4 63.83 73.11 4 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_160k_cityscapes 72.65 81.36 10 72.65 81.36 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.98 83.22 10 74.98 83.22 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.11 78.88 6 69.11 78.88 6 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.78 81.37 10 72.78 81.37 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.37 80.29 10 72.37 80.29 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_640k_cityscapes 63.53 74.6 4 65.91 75.91 3 log | 20210816_121228.log.json

ADE20k

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 16.15 22.12 2 16.15 22.12 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 24.2 31.67 10 24.2 31.67 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 26.17 34.86 10 26.17 34.86 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 16.89 22.96 2 16.89 22.96 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 24.71 32.46 10 24.71 32.46 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 16.77 22.89 2 16.77 22.89 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 26.81 34.96 10 26.81 34.96 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 16.37 22.7 2 16.37 22.7 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 24.38 32.52 10 24.38 32.52 10 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x512_160k_ade20k 0 0 0 0 0 0 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 23.82 31.51 10 23.82 31.51 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 24.14 31.81 10 24.14 31.81 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 12.23 17.0 2 12.23 17.0 2 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 20.82 27.58 10 20.82 27.58 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 21.98 29.06 10 21.98 29.06 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 14.11 19.06 3 14.11 19.06 3 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 24.06 31.78 10 24.06 31.78 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 14.37 19.21 3 14.37 19.21 3 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 25.22 32.67 10 25.22 32.67 10 log | 20210816_121228.log.json
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022