Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

Overview

arXiv

Dual Contrastive Learning Adversarial Generative Networks (DCLGAN)

We provide our PyTorch implementation of DCLGAN, which is a simple yet powerful model for unsupervised Image-to-image translation. Compared to CycleGAN, DCLGAN performs geometry changes with more realistic results. Compared to CUT, DCLGAN is usually more robust and achieves better performance. A viriant, SimDCL (Similarity DCLGAN) also avoids mode collapse using a new similarity loss.

DCLGAN is a general model performing all kinds of Image-to-Image translation tasks. It achieves SOTA performances in most tasks that we have tested.

Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Junlin Han, Mehrdad Shoeiby, Lars Petersson, Mohammad Ali Armin
DATA61-CSIRO and Australian National University
In NTIRE, CVPRW 2021.

Our pipeline is quite straightforward. The main idea is a dual setting with two encoders to capture the variability in two distinctive domains.

Example Results

Unpaired Image-to-Image Translation

Qualitative results:

Quantitative results:

More visual results:

Prerequisites

Python 3.6 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/DCLGAN.git
  • Install PyTorch 1.4 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

DCLGAN and SimDCL Training and Test

  • Download the grumpifycat dataset
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Train the DCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL 

Or train the SimDCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_SimDCL --model simdcl

We also support CUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cut --model cut

and fastCUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_fastcut --model fastcut

and CycleGAN:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cyclegan --model cycle_gan

The checkpoints will be stored at ./checkpoints/grumpycat_DCL/.

  • Test the DCL model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL

The test results will be saved to an html file here: ./results/grumpycat_DCL/latest_test/.

DCLGAN, SimDCL, CUT and CycleGAN

DCLGAN is a more robust unsupervised image-to-image translation model compared to previous models. Our performance is usually better than CUT & CycleGAN.

SIMDCL is a different version, it was designed to solve mode collpase. We recommend using it for small-scale, unbalanced dataset.

Datasets

Download CUT/CycleGAN/pix2pix datasets and learn how to create your own datasets.

Or download it here: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.

Apply a pre-trained DCL model and evaluate

We provide our pre-trained DCLGAN models for:

Cat <-> Dog : https://drive.google.com/file/d/1-0SICLeoySDG0q2k1yeJEI2QJvEL-DRG/view?usp=sharing

Horse <-> Zebra: https://drive.google.com/file/d/16oPsXaP3RgGargJS0JO1K-vWBz42n5lf/view?usp=sharing

CityScapes: https://drive.google.com/file/d/1ZiLAhYG647ipaVXyZdBCsGeiHgBmME6X/view?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints (You may need to create checkpoints folder by yourself if you didn't run the training code).

Example usage: Download the dataset of Horse2Zebra and test the model using:

python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_dcl

For FID score, use pytorch-fid.

Test the FID for Horse-> Zebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_B ./results/horse2zebra_dcl/test_latest/images/real_B

and Zorse-> Hebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_A ./results/horse2zebra_dcl/test_latest/images/real_A

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021dcl,
  title={Dual Contrastive Learning for Unsupervised Image-to-Image Translation},
  author={Junlin Han and Mehrdad Shoeiby and Lars Petersson and Mohammad Ali Armin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

If you use something included in CUT, you may also CUT.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on pytorch-CycleGAN-and-pix2pix and CUT. We thank the awesome work provided by CycleGAN and CUT. We thank pytorch-fid for FID computation. Great thanks to the anonymous reviewers, from both the main CVPR conference and NTIRE. They provided invaluable feedbacks and suggestions.

Owner
Computer vision.
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022