Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

Overview

You Only Cut Once (YOCO)

YOCO is a simple method/strategy of performing augmentations, which enjoys the properties of parameter-free, easy usage, and boosting almost all augmentations for free (negligible computation & memory cost). We hope our study will attract the community’s attention in revisiting how to perform data augmentations.

You Only Cut Once: Boosting Data Augmentation with a Single Cut
Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Ali Armin, Ian Reid, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University and University of Adelaide
Preprint

@inproceedings{han2022yoco,
  title={You Only Cut Once: Boosting Data Augmentation with a Single Cut},
  author={Junlin Han and Pengfei Fang and Weihao Li and Jie Hong and Mohammad Ali Armin and and Ian Reid and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2201.12078},
  year={2022}
}

YOCO cuts one image into two equal pieces, either in the height or the width dimension. The same data augmentations are performed independently within each piece. Augmented pieces are then concatenated together to form one single augmented image.  

Results

Overall, YOCO benefits almost all augmentations in multiple vision tasks (classification, contrastive learning, object detection, instance segmentation, image deraining, image super-resolution). Please see our paper for more.

Easy usages

Applying YOCO is quite easy, here is a demo code of performing YOCO at the batch level.

***
images: images to be augmented, here is tensor with (b,c,h,w) shape
aug: composed augmentation operations
h: height of images
w: width of images
***

def YOCO(images, aug, h, w):
    images = torch.cat((aug(images[:, :, :, 0:int(w/2)]), aug(images[:, :, :, int(w/2):w])), dim=3) if \
    torch.rand(1) > 0.5 else torch.cat((aug(images[:, :, 0:int(h/2), :]), aug(images[:, :, int(h/2):h, :])), dim=2)
    return images
    
for i, (images, target) in enumerate(train_loader):    
    aug = torch.nn.Sequential(
      transforms.RandomHorizontalFlip(), )
    _, _, h, w = images.shape
    # perform augmentations with YOCO
    images = YOCO(images, aug, h, w) 

Prerequisites

This repo aims to be minimal modifications on official PyTorch ImageNet training code and MoCo. Following their instructions to install the environments and prepare the datasets.

timm is also required for ImageNet classification, simply run

pip install timm

Images augmented with YOCO

For each quadruplet, we show the original input image, augmented image from image-level augmentation, and two images from different cut dimensions produced by YOCO.

Contact

[email protected] or [email protected]

If you tried YOCO in other tasks/datasets/augmentations, please feel free to let me know the results. They will be collected and presented in this repo, regardless of positive or negative. Many thanks!

Acknowledgments

Our code is developed based on official PyTorch ImageNet training code and MoCo.

Owner
ANU/CSIRO/AIML/U Adelaide. Working on vision/graphics. Email: [email
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022