RoFormer_pytorch

Overview

PyTorch RoFormer

原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer)

已经转化为PyTorch权重

安装

pip install roformer
或者
pip install git+https://github.com/JunnYu/RoFormer_pytorch.git

huggingface.co

https://huggingface.co/junnyu/roformer_chinese_base

使用

import torch
from roformer import RoFormerModel, RoFormerTokenizer
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
model = RoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
text = "这里基本保留了唐宋遗留下来的坊巷格局和大量明清古建筑,其中各级文保单位29处,被誉为“里坊制度的活化石”“明清建筑博物馆”!"
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs).last_hidden_state
print(outputs.shape)

MLM测试

import torch
from roformer import RoFormerForMaskedLM, RoFormerTokenizer
text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs).logits[0]
outputs_sentence = ""
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1])
        outputs_sentence += "[" + "||".join(tokens) + "]"
    else:
        outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))
print(outputs_sentence)
# 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。

手动权重转换

python convert_roformer_original_tf_checkpoint_to_pytorch.py \
    --tf_checkpoint_path=xxxxxx/chinese_roformer_L-12_H-768_A-12/bert_model.ckpt \
    --roformer_config_file=pretrained_models/chinese_roformer_base/config.json \
    --pytorch_dump_path=pretrained_models/chinese_roformer_base/pytorch_model.bin

tf与pytorch精度对齐

python compare_model.py
mean difference : tensor(4.3925e-07)
max  difference : tensor(7.6294e-06)

中文情感分类(chnsenti)

结果

model chnsenti
tensorflow-NEZHA(base-wwm) 94.75
pytorch-NEZHA(base-wwm) 94.92
pytorch-RoFormer(base) 95.08

参考

https://github.com/pengming617/bert_classification

https://github.com/bojone/bert4keras

https://github.com/ZhuiyiTechnology/roformer

https://github.com/lonePatient/NeZha_Chinese_PyTorch

https://github.com/lonePatient/TorchBlocks

Comments
  • 手动转换权重有问题

    手动转换权重有问题

    python convert_roformer_original_tf_checkpoint_to_pytorch.py
    --tf_checkpoint_path=xxxxxx/chinese_roformer_L-12_H-768_A-12/bert_model.ckpt
    --roformer_config_file=pretrained_models/chinese_roformer_base/config.json
    --pytorch_dump_path=pretrained_models/chinese_roformer_base/pytorch_model.bin

    这个直接运行好像不行,按照错误提示修改以后,只生成了一个pb文件,没有对应的config文件,这个是为啥呢?

    opened by TestNLP 13
  • 关于transformers的一些问题

    关于transformers的一些问题

    嗨,想问一下,现在使用transformers调用roformer相关模型,和使用本代码库的,是完全一样吗? 我想调用roformer-sim相关模型,是选用什么接口呀? RoFormerForMaskedLM吗? 我使用transformers RoFormerForMaskedLM调用之后,发现有一部分参数并没有被load(应该是pooler相关);测试的时候,直接拿来用是很不错的;但如果想拿来作为底座训练,发现loss降不下来(同样代码roberta是可以正常训练的),想知道是不是因为没有加pooler的原因。在你的example中没找到关于roformer-sim相关的例子,大佬有空的时候帮忙解答下哈,多谢啦!

    opened by yclzju 9
  • transformers 加载 roformer_chinese_sim_char_small 出错

    transformers 加载 roformer_chinese_sim_char_small 出错

    版本:

    transformers:4.9.1
    

    code:

    import torch
    from transformers import RoFormerModel, RoFormerTokenizer
    tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_sim_char_small")
    pt_model = RoFormerModel.from_pretrained("junnyu/roformer_chinese_sim_char_small")
    

    报错:

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-62-5df5e1c416aa> in <module>
          2 from transformers import RoFormerModel, RoFormerTokenizer, TFRoFormerModel
          3 tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_sim_char_small")
    ----> 4 pt_model = RoFormerModel.from_pretrained("junnyu/roformer_chinese_sim_char_small")
    
    /opt/anaconda3/lib/python3.8/site-packages/transformers/modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
       1350             error_msg = "\n\t".join(error_msgs)
       1351             raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
    -> 1352 
       1353         return model, missing_keys, unexpected_keys, error_msgs
       1354 
    
    /opt/anaconda3/lib/python3.8/site-packages/transformers/modeling_utils.py in _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path, ignore_mismatched_sizes, _fast_init)
       1496         x = self.dense_1(x).squeeze(-1)
       1497 
    -> 1498         if p_mask is not None:
       1499             if get_parameter_dtype(self) == torch.float16:
       1500                 x = x * (1 - p_mask) - 65500 * p_mask
    
    RuntimeError: Error(s) in loading state_dict for RoFormerModel:
    	size mismatch for roformer.encoder.embed_positions.weight: copying a param with shape torch.Size([1536, 64]) from checkpoint, the shape in current model is torch.Size([512, 64]).
    
    opened by liuyuzhangolvz 6
  • 关于其他模型的权重转换为RoFormer模型

    关于其他模型的权重转换为RoFormer模型

    您好,我正在进行关于长文本的模型训练,但是由于原版RoFormer模型过小,效果不佳,我想尝试large版RoFormer。 由于没有相关large模型,我想将开源的'hfl/chinese-macbert-large'权重转换为RoFormer模型,以尝试长文本训练。 苏神将绝对位置编码替换为RoPE的WoBERT模型转换为RoFormer,因此我通过相同的代码(https://github.com/ZhuiyiTechnology/roformer/blob/main/train.py) bert = build_transformer_model( config_path, checkpoint_path=None, model='roformer', with_mlm='linear', ignore_invalid_weights=True, return_keras_model=False ) model = bert.model y_in = keras.layers.Input(shape=(None,), name='Input-Label') outputs = CrossEntropy(1)([y_in, model.output]) train_model = keras.models.Model(model.inputs + [y_in], outputs) AdamW = extend_with_weight_decay(Adam, name='AdamW') AdamWLR = extend_with_piecewise_linear_lr(AdamW, name='AdamWLR') AdamWLRG = extend_with_gradient_accumulation(AdamWLR, name='AdamWLRG') optimizer = AdamWLRG( learning_rate=1e-5, weight_decay_rate=0.01, exclude_from_weight_decay=['Norm', 'bias'], grad_accum_steps=4, lr_schedule={20000: 1} ) train_model.compile(optimizer=optimizer) train_model.summary() bert.load_weights_from_checkpoint(checkpoint_path) model.save_weights('romac/bert_model.weights')

    转换了一个macbert版本的tf权重,然后想要通过您的convert_roformer_original_tf_checkpoint_to_pytorch.py将这个权重转换为pytorch版本,可却会报错,是因为我转换的权重有问题吗,还是说无法直接转换权重?

    convert_tf_checkpoint_to_pytorch('romac/bert_model.weights', 'romac/bert_config.json','romac/1') 报错: Traceback (most recent call last): File "C:\Users\14301\miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3427, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "", line 24, in romac/1') File "", line 16, in convert_tf_checkpoint_to_pytorch load_tf_weights_in_roformer(model, config, tf_checkpoint_path) File "C:\Users\14301\miniconda3\lib\site-packages\roformer\modeling_roformer.py", line 115, in load_tf_weights_in_roformer pointer.shape == array.shape File "C:\Users\14301\miniconda3\lib\site-packages\torch\nn\modules\module.py", line 948, in getattr type(self).name, name)) AttributeError: 'RoFormerForPreTraining' object has no attribute 'shape'

    opened by WENGSYX 6
  • 'RoFormerModel' object has no attribute 'shape'

    'RoFormerModel' object has no attribute 'shape'

    大佬,我用这个convert_tf_checkpoint_to_pytorch()函数想将苏神最近开源的RoFormer-Sim模型转成pytorch版的,但是遇到了torch.nn.modules.module.ModuleAttributeError: 'RoFormerModel' object has no attribute 'shape'的问题:

    def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, roformer_config_file, pytorch_dump_path):

    # Initialise PyTorch model
    config = RoFormerConfig.from_json_file(roformer_config_file)
    print(f"Building PyTorch model from configuration: {config}")
    model = RoFormerForMaskedLM(config)
    
    # Load weights from tf checkpoint
    load_tf_weights_in_roformer(model, config, tf_checkpoint_path)
    
    # Save pytorch-model
    print(f"Save PyTorch model to {pytorch_dump_path}")
    torch.save(model.state_dict(), pytorch_dump_path, _use_new_zipfile_serialization=False)
    

    Traceback (most recent call last): File "D:/Python/3.代码储存/1.重要代码学习笔记(重要)/21.Python自然语言处理/18.预训练语言模型专题学习/将tf1的checkpoint模型权重转换为pytorch的模型权重/convert_tf_to_pytorch.py", line 81, in pytorch_dump_path) File "D:/Python/3.代码储存/1.重要代码学习笔记(重要)/21.Python自然语言处理/18.预训练语言模型专题学习/将tf1的checkpoint模型权重转换为pytorch的模型权重/convert_tf_to_pytorch.py", line 42, in convert_tf_checkpoint_to_pytorch_roformer_model load_tf_weights_in_roformer(model, config, tf_checkpoint_path) File "D:\Python\main\lib\site-packages\transformers\models\roformer\modeling_roformer.py", line 167, in load_tf_weights_in_roformer pointer.shape == array.shape File "D:\Python\main\lib\site-packages\torch\nn\modules\module.py", line 779, in getattr type(self).name, name)) torch.nn.modules.module.ModuleAttributeError: 'RoFormerModel' object has no attribute 'shape'

    我使用的transformers版本是4.8.2的,函数里的RoFormerForMaskedLM模型换成RoFormerForCausalLM、RoFormerPreTrainedModel也不行依然会报错。

    RoFormer-Sim模型的权重下载自苏神的github: https://github.com/ZhuiyiTechnology/roformer/blob/main/README_zh.md

    opened by CurisZhou 5
  • 导包出现错误

    导包出现错误

    from transformers.file_utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward ImportError: cannot import name 'add_start_docstrings_to_model_forward'

    请问出现这个错误是什么原因呢

    opened by KyrieXDL 5
  • RoFormerConfig载入报错

    RoFormerConfig载入报错

    非常感谢您开源这个项目,我在使用roformer_chinese_char_base的时候想扩大max_position_embeddings的长度,所以在尝试通过RoFormerConfig的方式载入权重时报错。

    from roformer.modeling_roformer import RoFormerModel, RoFormerConfig
    myconfig = RoFormerConfig.from_pretrained('D:/pretrain/pytorch/roformer_chinese_char_base')
    myconfig.max_position_embeddings=2000
    model = RoFormerModel(config=myconfig)
    ckpt = torch.load('D:/pretrain/pytorch/roformer_chinese_char_base/pytorch_model.bin')
    model.load_state_dict(ckpt,strict=False)
    

    Missing key(s) in state_dict: "embeddings.word_embeddings.weight", "embeddings.token_type_embeddings.weight", "embeddings.LayerNorm.weight", "embeddings.LayerNorm.bias", "encoder.embed_positions.weight", "encoder.layer.0.attention.self.query.weight", "encoder.layer.0.attention.self.query.bias", "encoder.layer.0.attention.self.key.weight", "encoder.layer.0.attention.self.key.bias", "encoder.layer.0.attention.self.value.weight", "encoder.layer.0.attention.self.value.bias", "encoder.layer.0.attention.output.dense.weight", "encoder.layer.0.attention.output.dense.bias", "encoder.layer.0.attention.output.LayerNorm.weight", "encoder.layer.0.attention.output.LayerNorm.bias", "encoder.layer.0.intermediate.dense.weight", "encoder.layer.0.intermediate.dense.bias", "encoder.layer.0.output.dense.weight", "encoder.layer.0.output.dense.bias" 看了下RoFormerModel的网络层,貌似都是不带"roformer",请问这个是不是需要修改RoFormerModel里面的层名称?

    opened by renjunxiang 4
  • 相似句生成的问题

    相似句生成的问题

    第一次接触seq2seq和相似句生成。 我按照 #17 里提到的使用RoFormerForMaskedLM,设config.is_decoder=True,参考UniLM_Mask,替换掉了对应的位置

    def get_extended_attention_mask(self, seg_id):
            idxs = torch.cumsum(seg_id,dim=1)
            mask = idxs[:, None, :] <= idxs[:, :, None]
            mask =  1.0 * mask[:,None] #-(1.0 - mask[:, None]) * 1000000.0
            return mask
    

    但输出的结果是不对的。

    我现在的后续实现:将 [CLS]你叫什么?[SEP] 输入模型;把[SEP]位置的logit拿出求出概率,使用greedysearch拿出最大概率的id,加入input_ids;同时更新seg_id以求出新的 extended attention mask;对于最后一位logit重复之前操作直到输出终止符或超出长度。 请问哪里出问题了?@hxs91@JunnYu

    opened by WordBearerYI 3
  • roformer-v2结合huggingface的库accelerate 使用时会导致保存的模型被多次删除;导致部分模型没有被保存

    roformer-v2结合huggingface的库accelerate 使用时会导致保存的模型被多次删除;导致部分模型没有被保存

    accelerate的保存模型方法:

    # How to save your 🤗 Transformer?
    accelerator.wait_for_everyone()
    unwrapped_model = accelerator.unwrap_model(model)
    unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))
    

    roformer-v1 没有这个问题;roformer-v2 有这个问题,删除了多次

    opened by XiaoqingNLP 2
  • 采用长序列输入发生异常,roformer是否支持不定长度输入

    采用长序列输入发生异常,roformer是否支持不定长度输入

    您好,非常感谢您的开源以及提供pip安装。

    在使用rofromer时,使用短序列进行输入正常(<512),但使用过长输入会报错并停止运行。请问rofomer_pytorch是否支持变长输入呢?

    报错信息主要为:

    /opt/conda/conda-bld/pytorch_1646755861072/work/aten/src/ATen/native/cuda/Indexing.cu:703: indexSelectLargeIndex: block: [335,0,0], thread: [93,0,0] Assertion `srcIndex < srcSelectDimSize` failed.
    /opt/conda/conda-bld/pytorch_1646755861072/work/aten/src/ATen/native/cuda/Indexing.cu:703: indexSelectLargeIndex: block: [335,0,0], thread: [94,0,0] Assertion `srcIndex < srcSelectDimSize` failed.
    
      File "XXX/roformer/modeling_roformer.py", line 1075, in forward
        attention_mask, input_shape, device, past_key_values_length
      File "XXX/roformer/modeling_roformer.py", line 1158, in get_extended_attention_mask
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
    RuntimeError: CUDA error: device-side assert triggered
    
    opened by likestudy 2
  • 关于rotary_value的问题

    关于rotary_value的问题

    我看到不管是现在的实现还是以前的实现,rotary_value为false的时候,对于q和k都会做改变,我不清楚这和完全不做(将rotary_value为false时的代码都注释掉)改变是否等价?至少从实验结果来看差距很多。另外如果单纯将rotary_value设置为false的时候,效果比true的时候还要好一些。

    任务为预训练,并且在下游任务上进行微调。比较了预训练时训练loss和验证loss,微调时不同任务的得分。

    opened by hxs91 2
  • 对gradient checkpointing的支持似乎有问题

    对gradient checkpointing的支持似乎有问题

    你好!

    在使用roformer v2微调的时候开启gradient checkpointing的时候会产生报错: File "/root/conda/envs/highbase/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/root/conda/envs/highbase/lib/python3.7/site-packages/roformer/modeling_roformer.py", line 1120, in forward return_dict=return_dict, File "/root/conda/envs/highbase/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/root/conda/envs/highbase/lib/python3.7/site-packages/roformer/modeling_roformer.py", line 725, in forward encoder_attention_mask, File "/root/conda/envs/highbase/lib/python3.7/site-packages/torch/utils/checkpoint.py", line 177, in checkpoint return CheckpointFunction.apply(function, preserve, *args) TypeError: save_for_backward can only save variables, but argument 2 is of type tuple

    是我使用的方式不当么?不开启是可以正常训练的

    opened by boxiaowave 0
  • 关于模型转换问题

    关于模型转换问题

    请问怎样把bert4keras保存的模型转成pytorch, 是用model.save_weights()保存的 使用您提供的convert_roformer_original_tf_checkpoint_to_pytorch提示 RuntimeError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for

    opened by yang-zi-jiang 1
  • 在run_clue_no_trainer.py中,为什么train_dataloader的batch_siz=32在经过accelerator的处理后就变成None了?

    在run_clue_no_trainer.py中,为什么train_dataloader的batch_siz=32在经过accelerator的处理后就变成None了?

    在训练的时候,从Dataloader中拿数据说没有batch_size,我检查了好几遍是有输入这个参数的。结果发现 ( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler, ) = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) 这一段代码处理完后的train_dataloader的batch_size=None

    opened by learnmore-HDU 1
  • 您好!有一个关于模型转换的问题

    您好!有一个关于模型转换的问题

    我发现在bert4keras读取苏老师开源的chinese_roformer-sim-char-ft_L-12_H-768_A-12和在transformers上读取您的junnyu/roformer_chinese_sim_char_ft_base提取的句向量的效果是差不多的,但是当我尝试将苏老师的模型转为pytorch_bin再用transformers读取后,pooler层怎么都加不上去(bert4keras里指定with_pool='linear'就可以)请问您是如何解决的?

    opened by EddieChen324 3
Releases(v0.4.1)
Owner
yujun
Please show me your code.
yujun
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023