Reliable probability face embeddings

Related tags

Deep LearningProbFace
Overview

ProbFace, arxiv

This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) method. The representation of each face will be an Guassian distribution parametrized by (mu, sigma), where mu is the original embedding and sigma is the learned uncertainty. Experiments show that ProbFace could

  • improve the robustness of PFE.
  • simplify the calculation of the multal likelihood score (MLS).
  • improve the recognition performance on the risk-controlled scenarios.

Usage

Preprocessing

Download the MS-Celeb-1M dataset from insightface or face.evoLVe.PyTorch and decode it using this code

Training

  1. Download the base model ResFace64 and unzip the files under log/resface64.

  2. Modify the configuration files under configfig/ folder.

  3. Start the training:

    python train.py configfig/resface64_msarcface.py
    Start Training
    name: resface64
    # epochs: 12
    epoch_size: 1000
    batch_size: 128
    
    Saving variables...
    Saving metagraph...
    Saving variables...
    [1][1] time: 4.19 a 0.8130 att_neg 2.7123 att_pos 0.9874 atte 1.8354 lr 0.0100 mls 0.6820 regu 0.1267 s_L2 0.0025 s_max 0.4467 s_min 0.2813
    [1][101] time: 37.72 a 0.8273 att_neg 2.9455 att_pos 1.0839 atte 1.8704 lr 0.0100 mls 0.6946 regu 0.1256 s_L2 0.0053 s_max 0.4935 s_min 0.2476
    [1][201] time: 38.06 a 0.8533 att_neg 2.9560 att_pos 1.1092 atte 1.9117 lr 0.0100 mls 0.7208 regu 0.1243 s_L2 0.0063 s_max 0.5041 s_min 0.2505
    [1][301] time: 38.82 a 0.7510 att_neg 2.9985 att_pos 1.0223 atte 1.7441 lr 0.0100 mls 0.6209 regu 0.1231 s_L2 0.0053 s_max 0.4552 s_min 0.2251
    [1][401] time: 37.95 a 0.8122 att_neg 2.9846 att_pos 1.0803 atte 1.8501 lr 0.0100 mls 0.6814 regu 0.1219 s_L2 0.0070 s_max 0.4964 s_min 0.2321
    [1][501] time: 38.42 a 0.7307 att_neg 3.0087 att_pos 1.0050 atte 1.8465 lr 0.0100 mls 0.6005 regu 0.1207 s_L2 0.0076 s_max 0.5249 s_min 0.2181
    [1][601] time: 37.69 a 0.7827 att_neg 3.0395 att_pos 1.0703 atte 1.8236 lr 0.0100 mls 0.6552 regu 0.1195 s_L2 0.0062 s_max 0.4952 s_min 0.2211
    [1][701] time: 37.36 a 0.7410 att_neg 2.9971 att_pos 1.0180 atte 1.8086 lr 0.0100 mls 0.6140 regu 0.1183 s_L2 0.0068 s_max 0.4955 s_min 0.2383
    [1][801] time: 37.27 a 0.6889 att_neg 3.0273 att_pos 0.9755 atte 1.7376 lr 0.0100 mls 0.5635 regu 0.1171 s_L2 0.0065 s_max 0.4773 s_min 0.2481
    [1][901] time: 37.34 a 0.7609 att_neg 2.9962 att_pos 1.0403 atte 1.8056 lr 0.0100 mls 0.6367 regu 0.1160 s_L2 0.0064 s_max 0.4861 s_min 0.2272
    Saving variables...
    --- cfp_fp ---
    testing verification..
    (14000, 96, 96, 3)
    # of images: 14000 Current image: 13952 Elapsed time: 00:00:12
    save /_feature.pkl
    sigma_sq (14000, 1)
    sigma_sq (14000, 1)
    sigma_sq [0.19821654 0.25770819 0.29024169 0.35030219 0.40342696 0.44539295
     0.56343746] percentile [0, 10, 30, 50, 70, 90, 100]
    risk_factor 0.0 risk_threshold 0.5634374618530273 keep_idxes 7000 / 7000 Cosine score acc 0.980429 threshold 0.182809
    risk_factor 0.1 risk_threshold 0.4627984762191772 keep_idxes 6301 / 7000 Cosine score acc 0.983336 threshold 0.201020
    risk_factor 0.2 risk_threshold 0.4453900158405304 keep_idxes 5603 / 7000 Cosine score acc 0.985007 threshold 0.203516
    risk_factor 0.3 risk_threshold 0.4327596127986908 keep_idxes 4904 / 7000 Cosine score acc 0.986134 threshold 0.207834
    

Testing

  • Single Image Comparison We use LFW dataset as an example for single image comparison. Make sure you have aligned LFW images using the previous commands. Then you can test it on the LFW dataset with the following command:
    run_eval.bat

Visualization of Uncertainty

Pre-trained Model

ResFace64

Method Download2 Download2
Base Mode Baidu Drive PW:v800 [Google Drive]TODO
MLS Only Baidu Drive PW:72tt [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:sx8a [Google Drive]TODO
ProbFace Baidu Drive PW:pr0m [Google Drive]TODO

ResFace64(0.5)

Method Download2 Download2
Base Mode Baidu Drive PW:zrkl [Google Drive]TODO
MLS Only Baidu Drive PW:et0e [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:glmf [Google Drive]TODO
ProbFace Baidu Drive PW:o4tn [Google Drive]TODO

Test Results:

Method LFW CFP-FF CALFW AgeDB30 CPLFW CFP-FP Vgg2FP Avg
Base Mode 99.80 99.80 95.93 97.93 92.53 98.04 94.92 96.99
MLS Only 99.80 99.76 95.87 97.35 93.01 98.29 95.26 97.05
MLS + L1 + Triplet 99.85 99.83 96.05 97.93 93.17 98.39 95.36 97.22
ProbFace 99.85 99.80 96.02 97.90 93.53 98.41 95.34 97.26

Acknowledgement

This repo is inspired by Probabilistic-Face-Embeddings

Reference

If you find this repo useful, please consider citing:

@misc{chen2021reliable,
    title={Reliable Probabilistic Face Embeddings in the Wild},
    author={Kai Chen and Qi Lv and Taihe Yi and Zhengming Yi},
    year={2021},
    eprint={2102.04075},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Kaen Chan
Kaen Chan
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021