A New Approach to Overgenerating and Scoring Abstractive Summaries

Overview

A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

@inproceedings{song2021new, 
    title={A New Approach to Overgenerating and Scoring Abstractive Summaries},
    author={Song, Kaiqiang and Wang, Bingqing and Feng, Zhe and Liu, Fei},
    booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
    pages={1392--1404},
    year={2021}
}

Presentation Video

Check Our Presentation Video

Demo

Source Input:

The Bank of Japan appealed to financial markets to remain calm Friday following the US decision to order Daiwa Bank Ltd. to close its US operations.

Summaries with varying lengths:

Dependencies

The code is written in Python (v3.7) and Pytorch (v1.7+). We suggest the following enviorment:

HINT: Since huggingface transformers is alternating very fast, you may need to modify a lot of stuff if you want to use a new version. Contact me if you get any trouble on it.

To install pyrouge and transformers, run the command below:

pip install pyrouge transformers==2.3.0

For generating summaries with varying length

Step 1: clone this repo. Download trained Our Model, move it to the working folder and uncompress it.

git clone https://github.com/ucfnlp/varying-length-summ.git
mv model.zip varying-length-summ
cd varying-length-summ
unzip models.zip

Step 2: Generating summaries with varying length from a raw input file.

python run.py --do_test --parallel --input data/input.txt

It will generate summaries of varying lengths coupled with its order information.

For Selecting summaries with best quality binary classifer

Step 1: Follow the previous section about generating summaries with multiple length.

Step 2: Collect test set similar to data/gigaword_cls/test500* files:

  1. a source input file test500_input.txt

  2. a target output file test500_output.txt

  3. a label file test500_label.txt for whether the target summary is admissible for the source input. (all 0 if you don't have thoese labels)

HINT: one instance per line

Step 3: modify the test500 settings in settings/dataset/gigaword_cls.

Step 4: Run the code below.

python run_classifier.py --do_test --parallel

It will generate a prediction of admissible probability in predict.txt.

For Selecting summaries with length reward reranking method

Step 1: Follow the previous section about generating summaries with multiple length.

Step 2: Run the code below.

python run_rerank.py

It will re-rank the summary with length rewards. The predicted length is in length.txt

For Data Downloading (500 inputs x 7 lengths)

Please refer to this link

Owner
Kaiqiang Song
A PhD student of [email protected]. Interest in Machine Learning, Deep Neural Networks, Natural Lang
Kaiqiang Song
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022