Kinetics-Data-Preprocessing

Overview

Kinetics-Data-Preprocessing

Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like SlowFast or PytorchVideo. However, their instruction of dataset preparation is too brief. Therefore, this project provides a more detailed instruction for Kinetics-400/-600 data preprocessing.

Download the raw videos

There are multiple ways to download the raw videos of Kinetics-400 and Kinetics-600. Here, I list two common choices that I found to be simple and fast:

  1. Download the videos via the official scripts. However, I noticed that this option is very slow, so I personally recommend the next choice.

  2. Download the compressed videos from the Common Visual Data Foundation Servers following the repository, which is much faster as they organized 650,000 independent video clips into several compressed files.

Resize the videos

The common data preprocessing of Kinetics requires all videos to be resized to the short edge size of 256. Therefore, I use the moviepy package to do so. The package can be easily installed by the following command:

pip install moviepy

Then, you can use the resize_video.py to resize all the videos within the given folder by following command:

python resize_video.py --size 256 --path YOUR_VIDEO_CONTAINER

IMPORTANT! Note that the resize_video.py will replace the original mp4 files. If you want to keep the original files, please make copys before resizing.

Prepare the csv annotation files

Following SlowFast, we also need to prepare the csv annotation files for training, validation, and testing set as train.csv, val.csv, test.csv. The format of the csv file is:

path_to_video_1 label_1
path_to_video_2 label_2
path_to_video_3 label_3
...
path_to_video_N label_N

The original annotations can be found at the kinetics website, or you can directly use download links of kinetics-400 annotations and kinetics-600 annotations. The official annotations support two different types of files: csv and json. However, both of them don't meet the above format. Therefore, I also provide a python code to transfer json files to the corresponding csv files with correct format. It takes two inputs: the container path of all videos, the path of official json annotation files. The output annotations will be named as 'output_XXX.csv' and located at the same folder. The label-to-id mapping dictionary will be saved as 'label2id.json'. The following command is my example.

python kinetics_annotation.py --train_path /home/kaihua/datasets/kinetics-train/ \
    --test_path /home/kaihua/datasets/kinetics-test/ \
    --val_path /home/kaihua/datasets/kinetics-val/ \
    --anno_path /home/kaihua/datasets/kinetics400-anno/
Owner
Kaihua Tang
@kaihuatang.github.io/
Kaihua Tang
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022