In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Overview

Making Emojis More Predictable

by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad Akhtar from Indraprastha Institute of Information Technology, Delhi.

Introduction

The advent of social media platforms like WhatsApp, Facebook (Meta) and Twitter, etc. has changed natural language conversations forever. Emojis are small ideograms depicting objects, people, and scenes (Cappallo et al., 2015). Emojis are used to complement short text messages with a visual enhancement and have become a de-facto standard for online communication. Our aim is to predict a single emoji that appears in the input tweets.

In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Project Pipeline Summary

We started off by collecting the data. The data was then thoroughly studied and preprocessed. Key features were also extracted at this stage. Due to computational restrictions, a subset of data was taken which was further divided into training, test- ing and validation split, such that the distribution of any class in any two sets were same. After this, various machine learning and deep learning models were applied on the data set and the results were generated and analysed.

Deployment

Emoji Prediction Website

Screenshots

Prediction Website1 Prediction Website2

Dataset

The data we used consists of a list of tweets associated with a single emoji, indexed by 20 labels for each of the 20 emojis. 5,00,000 Tweets by users in the United States, from October 2015 to Jan 2018, were retrieved using the Twitter API. The script for scraping this dataset was made available by the SemEval 2018 challenge. Due to computational limitations we merged the test and trial data, and further divided that into training, trial and test data with a split of 70:10:20. We maintained the label ratios for each emoji across the three sets to best reflect how frequently they are used in real life.

Models

  • Machine Learning Models:

    • Logistic Regression
    • K-Nearest Neighbours
    • Stochastic Gradient Descent
    • Random Forest Classifier
    • Naive Bayes
    • Adaboost Classifier
    • Support Vector Machine
  • Deep Learning Models:

    • RNN
    • LSTM
    • BiLSTM

Contact

For further queries feel free to reach out to following contributors.
Karan Abrol ([email protected])
Karanjot Singh ([email protected])
Pritish Wadhwa ([email protected])

Final Report

Final Report 1
Final Report 2
Final Report 3
Final Report 4
Final Report 5
Final Report 6
Final Report 7

Owner
Karanjot Singh
GDSC Lead @dsc-iiitd | Outside Collaborator @oppia | Flutter/ Kotlin Developer | Cloud Enthusiast | CSE Junior @IIIT-Delhi
Karanjot Singh
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
A highly sophisticated sequence-to-sequence model for code generation

CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o

Graham Neubig 39 Aug 03, 2021
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022